Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms

M. Trassinelli, D. F. Anagnostopoulos, G. Borchert, A. Dax, J.-P. Egger, D. Gotta, M. Hennebach, P. Indelicato, Y.-W. Liu, B. Manil, N. Nelms, L. M. Simons, A. Wells

Institut of NanoSciences of Paris, France
 UNIVERSITY OF
LEICESTER

14th International Workshop on Meson Production, Properties and Interaction

2nd - 7th June 2016. Krakow, Poland

Prediction and discovery of the pion

Predicted in 1935 by Yukawa to describe the strong interaction as exchange of particle [1]

Expected mass $\sim 200 \mathrm{~m}_{\mathrm{e}}$

Discovered by emulsion photography (Pic du Midi) in 1947 [2] Estimated mass $\sim 1.5 \mathrm{~m}_{\mu}$

45: NATURE October 4, 1947 Vol. 160

Muon from the pion decay
Fig. 1. Obsrryation by Mrs. I. Powell. Cookt $\times 95$ achromatic objective; C2 Ilford Nucleak Researoh emulston loaded with boron. T'he track of the μ-meson is given in two parts, the point of junction being indigated by a and an arrow
[1] H. Yukawa, Proc. Phys. and Math. Soc. Japan 17, 48 (1935)
[2] C.M.G. Lattes et al., Nature 160, 453-456 and 486-492 (1947)

Charged pion

$$
\text { - } \begin{aligned}
\mathrm{m}_{\pi} & =139.5 \mathrm{MeV} / \mathrm{c} \\
& =254 \mathrm{~m}_{\mathrm{e}}
\end{aligned}
$$

- lifetime=26 ns
- composed by a quark and an antiquark

[1] E. Gardner and C. Lattes, Science 107, 270-271 (1948)

First mass measurements

- Particle trajectories analysis Barkas et al. [1-3]

Proton beam

Solid target (carbon)

First mass measurements

 $\pi^{-}+p \rightarrow n+\gamma$ reaction Crowe et al. [4]
π^{-}stopped in a hydrogen cell
\rightarrow pionic hydrogen production
\rightarrow nuclear absorption of the pion

Pionic hydrogen

First mass measurements

- Particle trajectories analysis Barkas et al. [1-3] ${ }^{1 .}$ - $\pi^{-}+p \rightarrow n+\gamma$ reaction Crowe et al. [4] Pionic atoms emission Stearns et al. [5]
π^{-}stopped in a solid target (AI, P, K)
\rightarrow pionic atoms production
\rightarrow X-ray from atomic level de-excitation

Pionic atom

Electromagnetic bound system Strong interaction as perturbation

Trajectories
$\pi^{-} p \rightarrow \gamma n$ reaction
Pionic atoms (abs. edge)

First mass measurements

- Particle trajectories analysis Barkas et al. [1-3] ${ }^{12}$ - $\pi^{-}+p \rightarrow n+\gamma$ reaction Crowe et al. [4]

Pionic atoms emission Stearns et al. [5]
π^{-}stopped in a solid target (AI, P, K)
\rightarrow pionic atoms production
\rightarrow X-ray from atomic level de-excitation
Pionic atom

Electromagnetic bound system Strong interaction as perturbation

First mass measurements

- Particle trajectories analysis Barkas et al. $[1-3]^{1}$ - $\pi^{-}+p \rightarrow n+\gamma$ reaction Crowe et al. [4] Pionic atoms emission Stearns et al. [5]

Higher pion beam intensity

\rightarrow Bragg spectroscopy Shafer et al. [6]

\section*{Pionic atom}

30-70 keV x-ray

Electromagnetic bound system Strong interaction as perturbation

Pionic spectroscopy and pion decay measurements

New pionic atom spectroscopy and pion decay measurements

Pionic spectroscopy and pion decay measurements

New pionic atom spectroscopy and pion decay measurements

Measurement of
$\mathbf{p}_{\mu}\left(, \mathrm{m}_{\mu}\right)$
\rightarrow pion mass
low boundary if no assumptions on the neutrino mass are made

Pionic spectroscopy and pion decay measurements

New pionic atom spectroscopy and pion decay measurements

Measurement of
$\mathbf{p}_{\mu}\left(, \mathrm{m}_{\mu}\right)$
\rightarrow pion mass
low boundary if no assumptions on the neutrino mass are made

Pion mass measurement problems

Pionic atoms formation and atomic cascade

Pion mass measurement problems

FORSCHUNGSZENTRUM

New measurement of the pion mass

New measurement of the pion mass ${ }_{\leftarrow}$ with a gaseous target [1]

Calibration from Cu
K α fluorescence in a different diffraction order
[1] S. Lenz et al., Phys. Lett. B 416, 50 (1998)

Present official value

Average between :

- Jeckelmann 1994 solution B (solid target)
- Lenz 1998 (gaseous target)

Particle Data Group. Chinese Phys. C 38, 090001 (2014)

PSI proposal R-97-02

NEW PRECISION DETERMINATION OF THE CHARGED PION MASS
D. Anagnostopoulos ${ }^{1}$, M. Augsburger ${ }^{2}$, G. Borchert ${ }^{1}$, D. Chatellard ${ }^{2}$,
M. Daum ${ }^{3}$, J.-P. Egger ${ }^{2}$, D. Gotta 1, P. Hauser ${ }^{3}$, P. Indelicato ${ }^{4}$, E. Jeannet ${ }^{2}$, K. Kirch ${ }^{3}$, O. W. B. Schult ${ }^{1}$, Th. Siems ${ }^{1}$, L. M. Simons ${ }^{3}$

- Gaseous target
\rightarrow no remaining el. contamination
- Muonic Oxygen transition as calibration \rightarrow high accuracy of the energy reference

Pion beam production

Production at the Paul Scherrer Institut (Villigen, Switzerland)

- Proton beam : $\mathrm{E}_{\mathrm{kin}}=590 \mathrm{MeV}, \mathrm{I}=1.9 \mathrm{~mA}$
- Graphite target
- 10^{8} pions $/ \mathrm{s}, \mathrm{E}_{\mathrm{kin}}=110 \mathrm{MeV}$

Accelerate proton

Target (graphite)

Pionic and muonic atoms production

- Cyclotron trap to stop the pions:
- strong magnetic field ($\mathrm{B}_{\max }=3.5$ Tesla)
- plastic degraders (energy loss)
- Gaseous target:
- $\mathrm{N}_{2} / \mathrm{O}_{2}$ gas mixture of $10 \% / 90 \%$
- Room temperature and $\mathrm{P}=1.4$ bar

$$
\tau_{\pi^{-}}=26 \mathrm{~ns}
$$

$1-5 \%$ of the incoming pions are stopped inside the target

- Production and trapping of the muons

$$
\pi^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}
$$

Formation of muonic and pionic atoms
N . of $\pi \mathrm{N}$ atoms $=10 \times \mathrm{N}$. of $\mu \mathrm{O}$ atoms

Pionic atoms formation and atomic cascade with N_{2} gaseous target

Capture at the radii of outmost electrons

$$
n_{\pi} \sim n_{e l} \sqrt{\frac{m_{\pi}}{m_{e l}}} \sim n_{e l} \times 16
$$

$\Gamma_{\text {Auger }} \gg \Gamma_{\mathrm{X} \text {-ray }}$ for $n \gg 1$
$\Gamma_{\text {X-ray }} \propto \Delta E^{3}$ for $n<6-7$

De-excitation via Auger (electron emission) decay

Excited hydrogen-like pionic nitrogen [1,2]
[1] R. Bacher et al., Phys. Rev. A 39, 1610 (1989)
[2] K. Kirch et al., Phys. Rev. A 59, 3375 (1999)

a JüLich

$\Gamma_{\text {Auger }} \gg \Gamma_{\mathrm{X} \text {-ray }}$ for $n \gg 1$
$\Gamma_{\text {X-ray }} \propto \Delta E^{3}$

Dominates for $n<6-7$

${ }^{\mathrm{E}_{8} / \mathrm{keV}}$ Circular transition enhanced

$$
|n, \ell=n\rangle \rightarrow|n-1, \ell=n-1\rangle
$$

Strong interaction effects minimized

Pion mass measurement from

QED calculation only

Measurement of $\mathrm{E}_{\mathrm{X} \text {-ray }}$

Circular transition enhanced

X-ray diffraction spectroscopy
Strong interaction effects minimized

X-ray Bragg spectroscopy with

 a Johann-type spectrometer [1-4]
[1] H.H. Johann, Zeitschrift für Physik 69, 185 (1931)
[2] J. Eggs et al., Zeitschrift für angewandte Physik 20, 118 (1965)
[3] D. Gotta, Progress in Particle and Nuclear Physics 52, 133 (2004)
[4] D. Gotta et al., Spectrochim. Acta, Part B 120, 9 (2016)

Set-up at PSI

Diffraction crystal and position sensitive detector

Radius of curvature: ~3 m
Diameter: 10 cm
Thickness: $290 \mu \mathrm{~m}$
Support: polished quartz lens
Produced by Zeiss (Oberkochen, Germany)
[1] D.S. Covita et al., Rev. Sci. Instum. 79, 033102-3 (2008)
[2] N. Nelms et al., Nucl. Instrum. Methods A
484, 419 (2002)
[3] P. Indelicato et al., Rev. Sci. Instum. 77, 043107 (2006)
pixel size $40 \mu \mathrm{~m} \times 40 \mu \mathrm{~m}$ 600×600 pixels per chip frame transfer $\approx 10 \mathrm{~ms}$
data processing 2.4 s operates at $-100^{\circ} \mathrm{C}$

$$
\begin{array}{r}
\Delta \mathrm{E} \approx 150 \mathrm{eV} \text { @ } 4 \mathrm{keV} \\
\quad \text { Efficiency } \approx 90 \% \\
\hline
\end{array}
$$

2×3 X-ray CCD array with frame

 buffer [2,3]
Data acquisition and pre-analysis

... after 5 weeks of data collection ...
6000 counts in each line
Spectrometer transmission: 5×10^{-8}
Stability of the set-up monitored by $8 \mathrm{keV} \mathrm{Cu} \mathrm{K} \alpha$ fluorescence line (fourth order reflection)

2×3 X-ray CCD array with frame buffer [2,3]
pixel size $40 \mu \mathrm{~m} \times 40 \mu \mathrm{~m}$ 600×600 pixels per chip frame transfer $\approx 10 \mathrm{~ms}$ data processing 2.4 s operates at $-100^{\circ} \mathrm{C}$

$$
\begin{array}{r}
\Delta \mathrm{E} \approx 150 \mathrm{eV} \text { @ } 4 \mathrm{keV} \\
\quad \text { Efficiency } \approx 90 \%
\end{array}
$$

d Јüıcн

Data acquisition and pre-analysis

... after 5 weeks of data collection ...
6000 counts in each line
Spectrometer transmission: 5×10^{-8}
Stability of the set-up monitored by $8 \mathrm{keV} \mathrm{Cu} \mathrm{K} \alpha$ fluorescence line (fourth order reflection)

$5 \mathrm{~g}-4 \mathrm{f}$ transitions in NN and $\mu \mathrm{O}$

$5 \mathrm{~g}-4 \mathrm{f}$ transitions in NN and $\mu \mathrm{O}$

Muon $=1 / 2$-spin particle \rightarrow fine structure in $\mu \mathrm{O}$

Lines profiles and positions

Lines profile contributions:

- Doppler broadening from Coulomb explosion of O_{2} and N_{2} molecules
- Rocking curve of the crystal
- Defocussing

Monte Carlo simulations and spectrometer characterization [1-5]

Spectra modeling:

- Remaining electrons contribution (satellite line)

- Distance and amplitude Bayesian evidence calculation between parallel and fine structure transitions
- Different width of the lines
 Fixed by the theory Information on the atomic de-excitation

Eventual position of the satellite line
[4] M. Theisen, Diplomarbeit thesis, University of Aachen (2013)
[5] D.E. Gotta et al., Spectrochim. Acta, Part B 120, 9 (2016)

From the line position to the pion mass

FORSCHUNGSZENTRUM

From the spatial diff. to the angular position diff.

$$
\Delta \Theta=-2 \arctan \left(\frac{\Delta x}{2 D}\right)
$$

Statistical uncertainty:
line positions: ± 0.045 pixel
Systematics uncertainty:
crystal-detector distance,

$$
\frac{h c}{E}=2 d \sin \Theta_{B}
$$

Bragg law

From the line position to the pion mass

From the spatial diff. to the angular position diff.

$$
\Delta \Theta=-2 \arctan \left(\frac{\Delta x}{2 D}\right)
$$

From the angular position diff. to the transition energy

FORSCHUNGSZENTRUM

$$
E_{\pi N}=E_{\mu O} \frac{1}{\cos \Delta \Theta-\frac{\sqrt{1-\left[h c /\left(2 d E_{\mu O}\right)\right]^{2}}}{h c /\left(2 d E_{\mu O}\right)} \sin \Delta \Theta}
$$

where
$E_{\mu O}=f_{\text {Dird }}^{\text {Dirac }}$
$\left(m_{\mu}\right)=\tilde{m}_{\mu} c^{2} \frac{(Z \alpha)^{2}}{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)+\underset{\substack{\text { OED } \\ \text { Dirac }}}{\mathcal{O}^{4}\left(Z^{4} \alpha^{4}\right)}$

$$
\frac{h c}{E}=2 d \sin \Theta_{B}
$$

Bragg law

$$
\mathrm{E}(5 \mathrm{~g}-4 \mathrm{f} \pi \mathrm{~N})=4055.397 \pm 0.005 \mathrm{eV}
$$

Crystal spacing, conversion constant, QED calculation (for $\mu \mathrm{O}$) [1-3],

From the line position to the pion mass

From the spatial diff. to the angular position diff.

$$
\Delta \Theta=-2 \arctan \left(\frac{\Delta x}{2 D}\right)
$$

From the angular position diff. to the transition energy

$$
E_{\pi N}=E_{\mu O} \frac{1}{\cos \Delta \Theta-\frac{\sqrt{1-\left[h c /\left(2 d E_{\mu O}\right)\right]^{2}}}{h c /\left(2 d E_{\mu O}\right)}} \sin \Delta \Theta
$$

where

$$
\frac{h c}{E}=2 d \sin \Theta_{B}
$$

Bragg law
where
$E_{\mu O}=f_{\text {DED }}^{\text {Dirac }}$
$\left(m_{\mu}\right)=\tilde{m}_{\mu} c^{2} \frac{(Z \alpha)^{2}}{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)+\mathcal{O}_{\text {DED }}^{\text {Dirac }}$
$\left(Z^{4} \alpha^{4}\right)$

From the transition energy to the pion mass

$$
m_{\pi}=\underset{\substack{\text { Klein-Gordon } \\ \text { KED }}}{-1}\left(E_{\pi N}\right)
$$

QED calculation (for $\pi \mathrm{N}$) [1],

$\pi \mathrm{N}$ transition energy calculations

The Klein-Gordon equation

$$
\left(\frac{1}{c^{2}}\left[E+e V_{0}(r)\right]^{2}+\hbar^{2} \nabla^{2}-m^{2} c^{2}-W(\mathbf{r})\right) \varphi(\mathbf{r})=0
$$

$$
E_{(0)}^{n l}=\frac{m c^{2}}{\sqrt{1+\frac{(Z \alpha)^{2}}{\left[n-l-1 / 2+\sqrt{(l+1 / 2)^{2}-(Z \alpha)^{2}}\right]^{2}}}}
$$

for Coulomb potential with
$5 \rightarrow 4 \pi \mathrm{~N}$ QED transition energies details (in eV) [1] point-like and infinite mass nucleus

	$5 g-4 f$	$5 f-4 d$
Coulomb	4054.1180	4054.7189
Finite size	0.0000	0.0000
Self-energy	-0.0001	-0.0003
Vacuum polarization (Uehling)	1.2485	2.9470
Vacuum polarization (Wichman-Kroll)	-0.0007	-0.0010
Vacuum polarization (loop after loop)	0.0008	0.0038
Vacuum polarization (Källén-Sabry)	0.0116	0.0225
Relativistic recoil	0.0028	0.0028
HFS shift	-0.0008	-0.0023
Total	4055.3801	4057.6914
Error	± 0.0011	± 0.0011
Strong interaction effects:	$44 \mu \mathrm{eV}$	7 meV

[1] M. Trassinelli et al., Phys. Rev. A 76, 012510(2007)

List of systematic effects

| type of uncertainty | $\mu \mathrm{O}$ |
| :--- | :---: | :---: | :---: | :---: |

The new measurement of the pion mass

Our work [2]:
$139.57077 \pm 0.00018 \mathrm{MeV} / \mathrm{c}^{2}$ $\rightarrow 1.3 \times 10^{-6}$ accuracy

- No effect of eventual remaining K-shell electrons (<10-9)
- High accuracy calibration line (0.25×10^{-6} from theory calc.)
[1] Particle Data Group. Chinese Phys. C 38, 090001 (2014)
[2] M. Trassinelli et al., arXiv:1605.03300 (2016)

Additional results

Muonic neutrino mass

Pion decay measurement [1]
$\mathrm{p}_{\mu}=29.792006 \pm 0.00011 \mathrm{MeV} / \mathrm{c}$
Pion mass measurement [2] $\mathrm{m}_{\pi}=139.57077 \pm 0.00018 \mathrm{MeV} / \mathrm{c}^{2}$

$$
m_{\nu_{\mu}} \in[100,244] \mathrm{keV} / \mathrm{c}^{2}
$$

in disagreement with astrophysical boundaries (WMAP and Planck) <0.6-2.3 eV and ${ }^{3} \mathrm{H}$ decay $+v$ oscillations

[1] K. Assamagan et al., Phys. Rev. D 53, 6065-6077 (1996).
[2] M. Trassinelli et al., arXiv:1605.03300, (2016)

Additional results

Muonic neutrino mass

Pion decay measurement
$p_{\mu}=29.792006 \pm 0.00011 \mathrm{MeV} / \mathrm{c}$
Pion mass measurement $m_{\pi}=139.57077 \pm 0.00018 \mathrm{MeV} / \mathrm{c}^{2}$

$$
m_{\nu_{\mu}} \in[100,244] \mathrm{keV} / \mathrm{c}^{2}
$$

(90\% c.l.)

Klein-Gordon equation test
Relativistic quantum mechanic equation for spin-0 particles (+ QED corrections)
$\Delta \mathrm{E}_{\text {theory }}=2.318 \pm \underset{\text { error due to }}{0.007 \mathrm{eV}}$ error due to the strong int. corr.
$\Delta E_{\exp }=2.306 \pm 0.015 \mathrm{eV} 95 \%$ c.l.
0.4% accuracy test

Additional results

Muonic neutrino mass
Pion decay measurement
$p_{\mu}=29.792006 \pm 0.00011 \mathrm{MeV} / \mathrm{c}$
Pion mass measurement
$\mathrm{m}_{\pi}=139.57077 \pm 0.00018 \mathrm{MeV} / \mathrm{c}^{2}$

Klein-Gordon equation test
Relativistic quantum mechanic equation for spin-0 particles (+ QED corrections)
$\Delta \mathrm{E}_{\text {theory }}=2.318 \pm \underset{\text { error due to the strong int. corr. }}{0.007 \mathrm{eV}} \quad 0.4 \%$ accuracy test
$\Delta E_{\exp }=2.306 \pm \mathbf{0 . 0 1 5} \mathbf{e V} 95 \%$ c.l.
X-ray standard from pionic atoms [1]
Accuracy of X -ray energies limited by the pion mass: good standard for the few keV regime [1]
[1] D.F. Anagnostopoulos et al., Phys. Rev. Lett. 91, 240801 (2003).

Conclusions

PSI proposal R-97-02

NEW PRECISION DETERMINATION OF THE CHARGED PION MASS
D. Anagnostopoulos ${ }^{1}$, M. Augsburger ${ }^{2}$, G. Borchert ${ }^{1}$, D. Chatellard ${ }^{2}$, M. Daum ${ }^{3}$, J.-P. Egger ${ }^{2}$, D. Gotta ${ }^{1}$, P. Hauser ${ }^{3}$, P. Indelicato ${ }^{4}$, E. Jeannet ${ }^{2}$, K. Kirch ${ }^{3}$, O. W. B. Schult ${ }^{1}$, Th. Siems ${ }^{1}$, L. M. Simons ${ }^{3}$

New measurement of the charged pion mass using X-ray spectroscopy exotic atoms

$$
\begin{gathered}
\mathrm{m}_{\pi}=139.57077 \pm 0.00018 \mathrm{MeV} / \mathrm{c}^{2} \\
1.3 \times 10^{-6} \text { rel. accuracy, } \\
\text { PDG present acc. }=2.5 \times 10^{-6}
\end{gathered}
$$

- No remaining electron contamination
- High accuracy reference energy

M. Trassinelli et al., arXiv:1605.03300 (2016)

PION MASS collaboration

Dept. of Material Science, University of loannina, Greece D. F. Anagnostopoulos,

Forschungszentrum Jülich, IKP, JCHP, ZEL, Jülich, Germany G. Borchert, D. Gotta, M. Hennebach,

Paul Scherrer Institut, Lab. for Part. Physics, Villigen, Switzerlana A. Dax, Y.-W. Liu, L. M. Simons

Institut de Physique de l'Univerisité de Neuchâtel, Switzerland J.-P. Egger

Laboratoire Kastler-Brossel (LKB) UPMC ENS CNRS, Paris, France

Dept. of Physics and Astronomy, University of Leicester, England
N. Nelms (PhD. in 2002), A. Wells

Institute des NanoSciences de Paris, France M.T. (PhD. in 2005 @ LKB)

Cascade theory
V. E. Markushin (PSI), Th. Jensen (ETHZ,PSI,LKB,FZJ,SMI), V. Pomerantsev,
V. Popov (MSU)

