MESON2016

PHOTOPRODUCTION OF VECTOR MESONS: FROM ULTRAPERIPHERAL TO SEMI-CENTRAL HEAVY ION COLLISIONS

Mariola Kłusek-Gawenda

Institute of Nuclear Physics PAS Kraków

MESON2016

MARIOLA K-G

EPA

NUCLEAR production of single vector meson

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS

DOUBLE-SCATTERING MECHANISM

 $\gamma\gamma$ fusion Smearing of ho^{0} mass $ho^{0}
ho^{0}
ightarrow 4\pi$

NOT ONLY UPC

CONCLUSION

MARIOLA K-G (KRAKÓW)

MESON2016

(日)

KRAKÓW, 2nd - 7th JUNE 2016 1/30

THEORETICAL PREDICTIONS

REFERENCES

- M. K-G and A. Szczurek, Double-scattering mechanism in the exclusive AA → AAρ⁰ρ⁰ reaction in ultrarelativistic collisions, Phys. Rev. C89 (2014) 024912
- M. K-G and A. Szczurek, Photoproduction of J/ψ mesons in peripheral and semicentral heavy ion collisions, Phys. Rev. C93 (2016) 044912

MESON2016

MARIOLA K-G

E₽₽

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF /ECTOR MESONS

DOUBLE-SCATTERING MECHANISM

 $\gamma\gamma$ fusion Smearing of ho^{0} mass $ho^{0}
ho^{0}
ightarrow 4\pi$

NOT ONLY UPC

Conclusion

イロト イポト イヨト イヨト

э

Equivalent Photon Approximation

The strong electromagnetic field is a source of photons that can induce electromagnetic reactions in ion-ion collisions.

SEMI-CENTRAL COLLISIONS

▶ < ≣

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

VUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECHANISM

Smearing of ho^{0} mass $ho^{0}
ho^{0}
ightarrow 4\pi$

NOT ONLY UPC

CONCLUSION

MARIOLA K-G (KRAKÓW)

MESON2016

EPA

PHOTOPRODUCTION OF VECTOR MESON

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ρ^0 meson production

NUCLEAR PRODUCTION OF /ECTOR MESONS Double-scattering mechanism

Smearing of ρ^0 mass $\rho^0 \rho^0 \rightarrow 4\pi$

NOT ONLY UPC

CONCLUSION

\leftarrow HERA data

MESON2016

MARIOLA K-G

MARIOLA K-G (KRAKÓW)

SINGLE VECTOR MESON PRODUCTION

MESON2016

MARIOLA K-G

SINGLE MESON PRODUCTION

FORM FACTOR

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ρ^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS

MECHANISM $\gamma\gamma$ fusion

Smearing of ho^0 mass $ho^0
ho^0 o 4\pi$

NOT ONLY UPC

MARIOLA K-G (KRAKÓW)

J/ψ meson production (UPC)

REALISTIC FORM FACTOR AND CLASSICAL MECHANICS APPROACH TO THE $\sigma_{tot}(J/\psi A)$

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ρ^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS

DOUBLE-SCATTERING MECHANISM

 $\gamma \gamma$ fusion Smearing of ho^0 mass $ho^0
ho^0 o 4\pi$

NOT ONLY UPC

CONCLUSION

・ロ・・ 1 日・ ・ ヨ・ ・ ヨ・

MESON2016

ρ^0 MESON PRODUCTION (UPC)

LEGEND

GM - V.P. Gonçalves and M.V.T. Machado, Eur. Phys. J. C40 (2005) 519, FSZ - L. Frankfurt, M. Strikman and M. Zhalov, Phys. Lett. B537 (2002) 51, KN - S. Klein and J. Nystrand, Phys. Rev. C60 (1999) 014903

CLASSICAL MECHANICS APPROACH TO THE $\sigma_{tot}(\rho^0 A)$

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECHANISM $\gamma \gamma$ FUSION SMEARING OF ρ^0 mass $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC

ρ^0 MESON PRODUCTION (UPC)

LEGEND

GM - V.P. Gonçalves and M.V.T. Machado, Eur. Phys. J. C40 (2005) 519, FSZ - L. Frankfurt, M. Strikman and M. Zhalov, Phys. Lett. B537 (2002) 51, KN - S. Klein and J. Nystrand, Phys. Rev. C60 (1999) 014903

CLASSICAL MECHANICS APPROACH TO THE $\sigma_{tot}(\rho^0 A)$

 $\begin{array}{l} \blacktriangleright \ \gamma \mathbf{P} \rightarrow \rho^{0} \\ \blacktriangleright \ \mathrm{Br}(\rho^{0} \rightarrow \pi^{+}\pi^{-}) \approx 100\% \\ \blacktriangleright \ \gamma \gamma \rightarrow \pi^{+}\pi^{-} \\ \blacktriangleright \ \mathbf{AA} \rightarrow \mathbf{AA}\pi^{+}\pi^{-} \\ \end{array}$

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECHANISM $\gamma \gamma$ FUSION SMEARING OF ρ^0 MASS $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC

$\pi\pi$ production - $\gamma\gamma$ fusion

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON SINGLE MESON PRODUCTION J/ψ meson production

 ho^{0} meson production

NUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECHANISM $\gamma\gamma$ FUSION SMEARING OF ρ^0 MASS $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC CONCLUSION

11/30

MARIOLA K-G (KRAKÓW)

KRAKÓW, 2nd - 7th JUNE 2016

ρ^0 production VS. Two-pion production

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS Double-scattering mechanism $\gamma\gamma$ fusion Smearing of ρ^0 mass $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC

PRODUCTION VS. **TWO-PION PRODUCTION**

MESON2016

MARIOLA K-G

 ρ^0 meson production

DOUBLE-SCATTERING MECHANISM

$$\frac{\mathrm{d}\sigma_{A_{1}A_{2}\rightarrow A_{1}A_{2}\rho^{0}\rho^{0}}}{\mathrm{d}y_{1}\mathrm{d}y_{2}} = \frac{1}{2} \int \left(\frac{\mathrm{d}P_{\gamma\mathbf{P}}\left(b,y_{1}\right)}{\mathrm{d}y_{1}} + \frac{\mathrm{d}P_{\mathbf{P}\gamma}\left(b,y_{1}\right)}{\mathrm{d}y_{1}}\right) \\ \times \left(\frac{\mathrm{d}P_{\gamma\mathbf{P}}\left(b,y_{2}\right)}{\mathrm{d}y_{2}} + \frac{\mathrm{d}P_{\mathbf{P}\gamma}\left(b,y_{2}\right)}{\mathrm{d}y_{2}}\right)\mathrm{d}^{2}b$$

 (ρ^0) 's have negligibly small transverse momenta)

イロト イポト イヨト イヨト

KRAKÓW, 2nd - 7th JUNE 2016

э

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR production of vector mesons

DOUBLE-SCATTERING MECHANISM

 $\gamma \gamma$ fusion Smearing of ρ^0 mass $\rho^0 \rho^0 \rightarrow 4\pi$ Not only UPC

CONCLUSION

 $\rho^0 \rho^0$ production - $\gamma \gamma$ fusion

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ρ^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS

DOUBLE-SCATTERING MECHANISM

 $\gamma\gamma$ fusion Smearing of ho^0 mass $ho^0
ho^0
ightarrow 4\pi$

NOT ONLY UPC

CONCLUSION

Ref.

M. Kłusek, W. Schäfer and A. Szczurek, Phys.Lett. **B674** (2009) 92, "Exclusive production of $\rho^0 \rho^0$ pairs in $\gamma\gamma$ collisions at RHIC" + back-up slide

LOW-ENERGY AND VDM-REGGE COMPONENT

MESON2016

イロト イポト イヨト イヨト

DOUBLE-SCATTERING MECHANISM

VS.

$\gamma\gamma$ FUSION

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECHANISM $\gamma \gamma$ FUSION SMEARING OF ρ^0 MASS $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC COUCL UPION

MARIOLA K-G (KRAKÓW)

MESON2016

KRAKÓW, 2nd - 7th JUNE 2016

DOUBLE-SCATTERING MECHANISM

VS.

$\gamma\gamma$ FUSION

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MICHANISM $\gamma \gamma$ FUSION SBEARING OF ρ^0 MASS $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC COUCL UPION

MARIOLA K-G (KRAKÓW)

KRAKÓW, 2nd - 7th JUNE 2016

Smearing of ρ^0 mass

Drell-Söding contribution:

$$\mathcal{A}(m) = \mathcal{A}_{\mathcal{BW}} rac{\sqrt{mm_{
ho^0} \Gamma_{
ho^0}(m)}}{m^2 - m_{
ho^0}^2 + im_{
ho^0} \Gamma_{
ho^0}(m)} + \mathcal{B}_{\pi\pi}$$
 $\Gamma_{
ho^0}(m) = \Gamma_{
ho^0} rac{m_{
ho^0}}{m} \left(rac{m^2 - 4m_{\pi}^2}{m_{
ho^0}^2 - 4m_{\pi}^2}
ight)^{3/2}$

Parameter	ZEUS	STAR	ALICE
	0.77 ± 0.002	0.775 ± 0.003	0.761 ± 0.0023
Γ _ρ ₀ [GeV]	$\textbf{0.146} \pm \textbf{0.003}$	0.162 ± 0.007	0.1502 ± 5.5
$\left \frac{\mathcal{B}_{\pi\pi}}{\mathcal{A}_{\mathcal{B}\mathcal{W}}}\right $ [GeV ^{-1/2}]	0.669	0.89 ± 0.08	$\textbf{0.5}\pm\textbf{0.04}$
<i>m</i> [GeV]	(0.55 – 1.2)	(0.5 - 1.1)	(0.28 - 1.512)

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ρ^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS Double-scattering mechanism

 $\gamma \gamma$ fusion Smearing of ρ^0 mass $\rho^0 \rho^0 \rightarrow 4\pi$

NOT ONLY UPC

CONCLUSION

MARIOLA K-G (KRAKÓW)

イロト イポト イヨト イヨト

<き> ■ つへで Kraków, 2nd - 7th June 2016

2016 16/30

Smearing of ρ^0 mass

Smearing of ρ^0 mass

MARIOLA K-G (KRAKÓW)

MESON2016

KRAKÓW, 2nd - 7th JUNE 2016

17/30

MESON2016

Smearing of ρ^0 mass

Smearing of ρ^0 mass

MARIOLA K-G (KRAKÓW)

MESON2016

KRAKÓW, 2nd - 7th JUNE 2016

17/30

MESON2016

$\pi^+\pi^-\pi^+\pi^-$ production @ RHIC

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECHANISM $\gamma \gamma$ FUSION SMEARING OF ρ^0 MASS $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC CONCLUSION

 $\rho^0 \rho^0 \to 4\pi$

 $\rho^0 \rho^0 \rightarrow 4\pi$

NUCLEA

PRODUCTION OF SINGLE VECTOR MESON

MESON2016

Single meson production J/ψ meson production ho^0 meson production

PRODUCTION OF PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECHANISM $\gamma \gamma$ FUSION SMEARING OF ρ^0 MASS $\rho^0 \rho^0 \rightarrow 4\pi$

NOT ONLY UPC CONCLUSION

MARIOLA K-G (KRAKÓW)

KRAKÓW, 2nd - 7th JUNE 2016

NOT ONLY UPC

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECHANISM $\gamma\gamma$ fusion Smearing of ρ^0 mass $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC

NOT ONLY UPC

$PBPB \rightarrow PBPBJ/\Psi$ (semi-central/peripheral)

MARIOLA K-G (KRAKÓW)

MESON2016

KRAKÓW, 2nd - 7th JUNE 2016

21/30

MESON2016

MARIOLA K-G

- 1. **EPA** strong el-mag field \rightarrow photons that can induce el-mag reactions in A A collisions
- 2. Impact parameter space approach
- 3. Realistic form factor
- 4. UPC: Good description of
 - STAR and ALICE data for $\rho^0(770)$ production
 - CMS and ALICE data for J/ψ production

 $\frac{\mathrm{d}\sigma_{\textit{PbPb}\rightarrow\textit{PbPbJ/\psi}}(y=0;\textit{UPC})}{\mathrm{d}y}\,\approx\,2\,\mathrm{mb}$

5. More central: Good description of

• ALICE data for J/ψ production

$$\frac{r_{PbPb \rightarrow J/\psi}^{photoprod.}(y=0; b < R_A + R_B)}{dy} \sim (1.00/1.55) \text{ mb}^*$$

* $\frac{d\sigma_{pp \rightarrow J/\psi}(y=0)}{dy} \approx 4.31 \pm 0.99 \ \mu b \oplus no. of binary collisions$

experimental nuclear modification factor

$$\rightarrow \frac{\mathrm{d}\sigma_{PbPb \rightarrow J/\psi}(y=0)}{\mathrm{d}y} \sim 1 \,\mathrm{mb}$$

MARIOLA K-G (KRAKÓW)

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ρ^0 meson production

NUCLEAR PRODUCTION OF /ECTOR MESONS

DOUBLE-SCATTERING MECHANISM

 $\gamma \gamma$ fusion Smearing of ho^0 mass $ho^0
ho^0 o 4\pi$

NOT ONLY UPC

22/30

CONCLUSION

KRAKÓW, 2nd - 7th JUNE 2016

- 6. Smearing of ρ^0 meson
- 7. Comparison of four-pion production via $\rho^0 \rho^0$ production
 - $\gamma\gamma$ fusion
 - nuclear double-photoproduction (very large)

Energy	mechanism	σ_{tot} [mb]
RHIC ($\sqrt{s_{NN}} = 200 \text{ GeV}$)	$\rho^0 \rho^0$ in double-scattering	1.6
-11-	$\rho^0 \rho^0$ in $\gamma \gamma$ fusion	0.1
- -	$\pi^+\pi^-\pi^+\pi^-$ in $\gamma\gamma$ fusion	0.1
LHC ($\sqrt{s_{NN}} = 3.5 \text{ TeV}$)	ρ^0 in photoproduction	4089.3
	$\pi^+\pi^-$ in $\gamma\gamma$ fusion	46.7

MESON2016

MARIOLA K-G

E₽₽

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS

DOUBLE-SCATTERING MECHANISM

 $\gamma\gamma$ fusion Smearing of ho^0 mass $ho^0
ho^0 o 4\pi$

NOT ONLY UPC

23/30

CONCLUSION

< □ > < 同 > < 回 > < 回 > < □ > <

 Coherent V production in AA UPC with electromagnetic dissociation of heavy ions

M. Kłusek-Gawenda, M. Ciemała, W. Schäfer and A. Szczurek, Phys. Rev. **C89** (2014) 054907, "Electromagnetic excitation of nuclei and neutron evaporation in ultrarelativistic ultraperipheral heavy ion collisions"

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECILIANISM $\gamma\gamma \tau$ FUSION SMEARING OF ρ^0 MASS $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC CONCLUSION

 Coherent V production in AA UPC with electromagnetic dissociation of heavy ions

M. Kłusek-Gawenda, M. Ciemała, W. Schäfer and A. Szczurek, Phys. Rev. **C89** (2014) 054907, "Electromagnetic excitation of nuclei and neutron evaporation in ultrarelativistic ultraperipheral heavy ion collisions"

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECHANISM $\gamma\gamma$ FUSION SMEARING OF ρ^0 MASS $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC CONCLUSION

Back-up slides

MESON2016

MARIOLA K-G

E₽₽

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS

DOUBLE-SCATTERING MECHANISM

 $\gamma \gamma$ fusion Smearing of ho^0 mass $ho^0
ho^0 o 4\pi$

NOT ONLY UPC

CONCLUSION

ELEMENTARY CROSS SECTION $\gamma\gamma \rightarrow \rho^0 \rho^0$

$$\frac{\mathrm{d}\sigma_{\gamma\gamma \to \rho}^{\mathrm{ngl}\,\mathrm{e-energy}}}{\mathrm{d}\hat{t}} = \frac{1}{16\pi\hat{s}} \left| \mathcal{M}_{\gamma\gamma \to \rho}{}_{\rho}{}_{0} \left(\hat{s}, \hat{t}; q_{1}, q_{2} \right) \right|^{2}$$
(4)

$$\mathcal{M}_{\gamma\gamma\to\rho^0\rho^0}\left(\hat{\mathbf{s}},\,\hat{\mathbf{t}};\,\mathbf{q}_1,\,\mathbf{q}_2\right) = C_{\gamma\to\rho^0}C_{\gamma\to\rho^0}\mathcal{M}_{\rho^{0*}\rho^{0*}\to\rho^0\rho^0}\left(\hat{\mathbf{s}},\,\hat{\mathbf{t}};\,\mathbf{q}_1,\,\mathbf{q}_2\right) \tag{5}$$

$$\mathcal{M}_{\rho^{0*}\rho^{0*} \to \rho^{0}\rho^{0}}\left(\hat{\mathbf{s}},\hat{\mathbf{t}};q_{1},q_{2}\right) = \left(\eta_{\mathbf{P}}\left(\hat{\mathbf{s}},\hat{\mathbf{t}}\right)C_{\mathbf{P}}\left(\frac{\hat{\mathbf{s}}}{s_{0}}\right)^{\alpha\mathbf{P}\left(\hat{\mathbf{t}}\right)-1} + \eta_{\mathbf{R}}\left(\hat{\mathbf{s}},\hat{\mathbf{t}}\right)C_{\mathbf{R}}\left(\frac{\hat{\mathbf{s}}}{s_{0}}\right)^{\alpha\mathbf{R}\left(\hat{\mathbf{t}}\right)-1}\right) \times \hat{\mathbf{s}}F\left(\hat{\mathbf{t}};q_{1}^{2}\approx0\right)F\left(\hat{\mathbf{t}};q_{2}^{2}\approx0\right)$$
(6)

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MEGIANISM $\gamma\gamma$ FUSION SMEARING OF ρ^0 MASS $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC CONCLUSION

イロト イポト イヨト イヨト

NUCLEAR CROSS SECTION

c

$$\sigma_{A_{1}A_{2}\rightarrow A_{1}A_{2}X} = \int d\omega_{1} d\omega_{2} n(\omega_{1}) n(\omega_{2}) \sigma_{\gamma\gamma \rightarrow X}(\omega_{1}, \omega_{2})$$

$$= \dots$$

$$= \int N(\omega_{1}, \mathbf{b}_{1}) N(\omega_{2}, \mathbf{b}_{2}) S_{abs}^{2}(\mathbf{b})$$

$$\times \sigma_{\gamma\gamma \rightarrow X} (\sqrt{S_{A_{1}A_{2}}})$$

$$\times 2\pi b db d\overline{b}_{X} d\overline{b}_{Y} \frac{W_{\gamma\gamma}}{2} dW_{\gamma\gamma} dY_{X} \qquad (8)$$

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ρ^0 meson production

(7)

PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECHANISM $\gamma\gamma$ FUSION SMEARING OF ρ^0 MASS $\rho^0\rho^0 \rightarrow 4\pi$ NOT ONLY UPC

CONCLUSION

27/30

MARIOLA K-G (KRAKÓW)

KRAKÓW, 2nd - 7th JUNE 2016

$AA \rightarrow AA \rho^0 \rho^0$ - Form factor

 $N(\omega_{1/2}, \mathbf{b_{1/2}})$ depends on the form factor

MESON2016

MARIOLA K-G

EPA

realistic

monopole

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ho^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECHANISM $\gamma\gamma$ FUSION SMEARING OF ρ^0 MASS $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC CONCLUSION

28/30

イロト イポト イヨト イヨト

MARIOLA K-G (KRAKÓW)

MESON2016

KRAKÓW, 2nd - 7th JUNE 2016

Excitation function $\gamma^A X \to k n^{A-1} X \downarrow$

MESON2016

MARIOLA K-G

EPA

NUCLEAR PRODUCTION OF SINGLE VECTOR MESON

Single meson production J/ψ meson production ρ^0 meson production

NUCLEAR PRODUCTION OF VECTOR MESONS DOUBLE-SCATTERING MECHANISM $\gamma\gamma$ FUSION SMEARING OF ρ^0 MASS $\rho^0 \rho^0 \rightarrow 4\pi$ NOT ONLY UPC CONCLUSION

MARIOLA K-G (KRAKÓW)

MESON2016

KRAKÓW, 2nd - 7th JUNE 2016 30 / 30