

Outline

- Introduction
- 2 Experiment
 - Experimental setup
 - Event counting
- Analysis
 - Backgrounds
 - Signals
 - Expected results
- Summary

Introduction

Why measure $\gamma + {}^2{\rm H} \rightarrow \pi^- + 2{\rm p} \; (\gamma + {\bf n} \rightarrow \pi^- + {\rm p})$?

0

Summary

Why measure
$$\gamma + {}^2{\rm H} \rightarrow \pi^- + 2{\rm p} \ (\gamma + {\bf n} \rightarrow \pi^- + {\rm p})$$
?

- Provides a test for various low-energy QCD models.
 - Dispersion Theory
 - Effective Field Theories
 - SAID/MAID models

Why measure
$$\gamma + {}^2{\rm H} \rightarrow \pi^- + 2{\rm p} \ (\gamma + {\bf n} \rightarrow \pi^- + {\rm p})$$
?

- Provides a test for various low-energy QCD models.
 - Dispersion Theory
 - Effective Field Theories
 - SAID/MAID models
- Available cross-section data points below $E_{\gamma} = 200~{
 m MeV}$ [1]:
 - π^0 : 1524
 - π⁺: 92
 - π⁻: 51

Why measure
$$\gamma + {}^2H \rightarrow \pi^- + 2p \ (\gamma + \mathbf{n} \rightarrow \pi^- + p)$$
?

- Provides a test for various low-energy QCD models.
 - Dispersion Theory
 - Effective Field Theories
 - SAID/MAID models
- Available cross-section data points below $E_{\gamma} = 200~{
 m MeV}$ [1]:
 - π^0 : 1524
 - π⁺: 92
 - π⁻: 51
- No π^- data below $E_{\gamma} = 158 \, \mathrm{MeV}$.
- Last known π^- measurement in 1994 by Liu (PhD thesis, unpublished).

00

Why measure $\gamma + {}^{2}\mathrm{H} \rightarrow \gamma' + {}^{2}\mathrm{H}$?

Why measure
$$\gamma + {}^2H \rightarrow \gamma' + {}^2H$$
?

Access neutron polarisabilities.

Why measure $\gamma + {}^2H \rightarrow \gamma' + {}^2H$?

- Access neutron polarisabilities.
- Test for $HB\chi PT$.

Why measure $\gamma + {}^2H \rightarrow \gamma' + {}^2H$?

- Access neutron polarisabilities.
- Test for $HB\chi PT$.
- No data close above pion threshold.

Experiment - setup

The experiment was performed at Maxlab in Lund, Sweden. University of Glasgow

The experiment was performed at Maxlab in Lund, Sweden University of Glasgow

- Mainly a synchrotron radiation facility.
- For nuclear physics: electron beam with $E_e = 190 \,\mathrm{MeV}$

The experiment was performed at Maxlab in Lund, Sweden. University of Glasgow

- Mainly a synchrotron radiation facility.
- For nuclear physics: electron beam with $E_e=190~{
 m MeV}$

Create tagged Bremsstrahlung photon beam from electron beam, E_{γ} from 140 to 160 MeV.

Figure: Floor plan of the experiment at Maxlab in Lund, Sweden.

Figure: Experimental hall at Maxlab in Lund, Sweden.

Experiment - event counting

Reaction $\gamma + {}^2{\rm H} \rightarrow \pi^- + 2{\rm p}$, pion produced on the neutron.

Reaction $\gamma + {}^2{\rm H} \to \pi^- + 2{\rm p}$, pion produced on the neutron. University

Radiative capture reaction $\pi^- + {}^2{\rm H} \to \gamma + 2{\rm n}$, pion captured on the proton.

Identify pions through counting radiative capture photons.

Reaction $\gamma + {}^{2}{\rm H} \rightarrow \pi^{-} + 2{\rm p}$, pion produced on the neutron of Glasgow

Radiative capture reaction $\pi^- + {}^2H \to \gamma + 2n$, pion captured on the proton.

Identify pions through counting radiative capture photons.

Assumption: radiative photons emitted isotropically, effectively we do 3 simultaneous σ measurements.

Competing scenarios to radiative capture $\pi^- + {}^2{\rm H} \rightarrow \gamma + 2{\rm n}$?

◆ロ → ◆園 → ◆園 → ◆園 → 園 = め へ ○

Competing scenarios to radiative capture $\pi^- + {}^2\mathrm{H} \rightarrow \gamma + 2\mathrm{n}$?

• Escape from target volume - Geant4 simulation.

Competing scenarios to radiative capture $\pi^- + {}^2{\rm H} \rightarrow \gamma + 2{\rm n}$?

- Escape from target volume Geant4 simulation.
- Decay Geant4 simulation.

68 mm

Competing scenarios to radiative capture $\pi^- + {}^2{\rm H} \to \gamma + 2{\rm n}$?

- Escape from target volume Geant4 simulation.
- Decay Geant4 simulation.
- Non-rad capture $\pi^-+{}^2{\rm H}\to 2{\rm n}$ Branching ratio known $\frac{\pi^-+{}^2{\rm H}\to 2{\rm n}}{\pi^-+{}^2{\rm H}\to \gamma 2{\rm n}}=2.83\pm 0.04$ [2]

◆ロト 4周ト 4 まト 4 まト まに かりへ

Competing scenarios to radiative capture $\pi^- + {}^2{\rm H} \rightarrow \gamma + 2{\rm n}$?

- Escape from target volume Geant4 simulation.
- Decay Geant4 simulation.
- Non-rad capture $\pi^-+{}^2{\rm H}\to 2{\rm n}$ Branching ratio known $\frac{\pi^-+{}^2{\rm H}\to 2{\rm n}}{\pi^-+{}^2{\rm H}\to \gamma 2{\rm n}}=2.83\pm 0.04$ [2]
- ullet Other scenarios $\sim < 1\%$ [3, 4, 5]

68 mm

The Compton events $\gamma + {}^2{\rm H} \rightarrow \gamma' + {}^2{\rm H}'$ are identified through $E_{\gamma} - E_{\gamma'} = 0$.

The Compton events $\gamma + {}^2{\rm H} \rightarrow \gamma' + {}^2{\rm H}'$ are identified through $E_{\gamma} - E_{\gamma'} = 0$.

Note the difference compared to π^- measurement:

The Compton events $\gamma + {}^2{\rm H} \rightarrow \gamma' + {}^2{\rm H}'$ are identified through $E_{\gamma} - E_{\gamma'} = 0$.

Note the difference compared to π^- measurement: For π^- we measure σ **VS** For Compton we measure $\frac{d\sigma}{d\Omega}$ points.

Analysis - backgrounds

Neutron background channels:

• Non-rad. capture $\pi^- + {}^2{
m H} o 2{
m n}$, 2.83 $imes \sigma_{\gamma 2{
m n}}$ (Geant4)

- Non-rad. capture $\pi^- + {}^2{\rm H} \rightarrow 2{\rm n}$, 2.83 × $\sigma_{\gamma 2{\rm n}}$ (Geant4)
- ② Photodisinteg. $\gamma + {}^2{
 m H}
 ightarrow {
 m np}$, $\sigma_{
 m np} \sim \sigma_{\pi^- 2
 m p}$ (Geant4, [6])

- Non-rad. capture $\pi^- + {}^2{\rm H} \rightarrow 2{\rm n}$, $2.83 \times \sigma_{\gamma 2{\rm n}}$ (Geant4)
- Opposition Photodisinteg. $\gamma + {}^{2}H \rightarrow np$, $\sigma_{np} \sim \sigma_{\pi^{-}2p}$ (Geant4, [6])

Other background channels:

• Kapton container background, measured (dummy target run).

- University
 of Glasgow
- f 0 Non-rad. capture $\pi^- + {}^2{
 m H} o 2{
 m n}$, 2.83 $imes \sigma_{\gamma 2{
 m n}}$ (Geant4)
- Opposition Photodisinteg. $\gamma + {}^{2}H \to np$, $\sigma_{np} \sim \sigma_{\pi^{-}2p}$ (Geant4, [6])

Other background channels:

- Kapton container background, measured (dummy target run).
- $ext{ 9 Pi0 single photon background, } \sigma_{\pi^0 \mathrm{np}} < \sigma_{\pi^- 2\mathrm{p}} \text{ (Geant4)}.$

Analysis - signals

π^- production signal by incident E_{γ} (prelim)

Compton signal by incident E_{γ} at $\theta=60^{\circ}$ (preliminary of Glasgow

5 10 15 20 Missing Energy [MeV]

-15 -10

-20 -15 -10

Analysis - π^- expected results

 π^- on deuteron: σ at eight E_{γ} values from 140 to 160 MeV in \sim 2 MeV bins.

 π^- on deuteron: σ at eight E_{γ} values from 140 to 160 MeV in \sim 2 MeV bins.

• Shown signals include roughly 50-60% of data, with all data statistical uncertainty < 5%.

 π^- on deuteron: σ at eight E_{γ} values from 140 to 160 MeV in \sim 2 MeV bins.

- Shown signals include roughly 50-60% of data, with all data statistical uncertainty < 5%.
- This will be first good statistics threshold data.

Compton on deuteron: differential cross-section $d\sigma/d\Omega$ values in 4 energy bins at 2(3?) angles.

Compton on deuteron: differential cross-section $d\sigma/d\Omega$ values in 4 energy bins at 2(3?) angles.

 \bullet Shown signals include roughly 50-60% of data, with all data statistical uncertainty $\sim 10\%.$

Compton on deuteron: differential cross-section $d\sigma/d\Omega$ values in 4 energy bins at 2(3?) angles.

- Shown signals include roughly 50-60% of data, with all data statistical uncertainty $\sim 10\%.$
- This will be first Compton measurement in above threshold region.

 $\pi^-/\text{Compton}$ on deuteron measurement motivation:

- Provide test for low-energy QCD models.
- No previous measurement.

- $\pi^-/\text{Compton}$ on deuteron measurement motivation:
 - Provide test for low-energy QCD models.
 - No previous measurement.

Experiment and analysis:

- Analysis components and procedures well understood.
- Preliminary results show promise.

- $\pi^-/\text{Compton}$ on deuteron measurement motivation:
 - Provide test for low-energy QCD models.
 - No previous measurement.

Experiment and analysis:

- Analysis components and procedures well understood.
- Preliminary results show promise.

Expected results:

- $\pi^- \sigma$ on deuteron: value at 8 energies.
- Compton $d\sigma/d\Omega$ on deuteron: 5(7?) points.

 $\pi^-/\text{Compton}$ on deuteron measurement motivation:

- Provide test for low-energy QCD models.
- No previous measurement.

Experiment and analysis:

- Analysis components and procedures well understood.
- Preliminary results show promise.

Expected results:

- $\pi^- \sigma$ on deuteron: value at 8 energies.
- Compton $d\sigma/d\Omega$ on deuteron: 5(7?) points.

I would like to thank the MAXTagg collaboration and the MESONS2016 conference.

Thank you for listening!

References I

- http://gwdac.phys.gwu.edu
- V.L. Highland *et. al.*, Branching Ratios For Stopped Pions In Deuterium, 1981.
- D.W. Joseph, Electron Pair Production in $\pi^- + d$ Capture, 1960.
- S. Tripathi *et al.* Double radiative pion capture on hydrogen and deuterium and the nucleons pion cloud, 2007.
- R. MacDonald *et al.* Charge Exchange of Stopped π^- in Deuterium: Experiment and Theory, 1977.
- D.A. Jenkins *et al.* $^2\mathrm{H}(\gamma,\mathrm{p})\mathrm{n}$ cross section between 20 and 440 MeV, 1994.