Inclusive production of J/yy and ¥’ mesons at the LHC
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Abstract. We discuss the prompt production &fyy mesons in proton-proton collisions
at the LHC within a NRQCDk;-factorization approach using Kimber-Martin-Ryskin
(KMR) unintegrated gluon distributions (UGDF). We inclulleth direct color-singlet
production gg — J/wg) as well as a feed-down from. — J/yy andy’ — J/uX.
The production of the decaying mesons 6r ’)is also calculated within NRQCR-
factorization. The corresponding matrix elementsdior— J/v, gg — ¢’ andgg — xc
include parameters of the nonrelativistic spatial waveciams of quarkonia at = O,
which are taken from potential models from the literaturee §t the ratio of the corre-
sponding of the cross sections fay(2)-to-y-(1) much closer to experimental data than
obtained in recent analyses. fidirential distributions in rapidity of/y andy’ are cal-
culated and compared to experimental data of the ALICE an@l.Eobllaborations. We
discuss possible onset of gluon saturatidie@s at forwartbackward rapidities. One
can describe the experimental data 8¢ production within model uncertainties with
color-singlet component only. Therefore our theoretieaults leave only a relatively
small room for the color-octet contributions.

1 Introduction

For along time there are discrepancies among authors dtmptaduction mechanism afy quarko-
nia in proton-proton and proton-antiproton collisions.n&oauthors think that the cross section is
dominated by the color-octet contribution. Some autholi®be that the color-singlet contribution
dominates. The color-octet contribution cannot be catedl&rom first principle and is rather fitted
to the experimental data. férent fits from the literature givefiérent magnitudes of the color-octet
contributions. Therefore we concentrate on the colorisingpntribution. In the present paper we
wish to calculate the color-singlet contribution as welpassible in the NRQCR-factorization and
see how much room is left for the morefitiult color-octet contribution. In the present approach we
concentrate rather on small transverse momentipbr y’ relevant for ALICE and LHCb data [1—
5]. We expect that color-singlet contributions may domriatthis region of the phase space. Finally
¥’ quarkonium also has a sizable branching fraction ilfieX [6]. Fortunately this contribution is
much smaller than the direct one as will be discussed in f8}ak considered recently in an almost
identical approach in [9].
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Figure 1. The leading-order diagram for promity (') meson production in thie-factorization approach.

2 Inclusive production of J/¥ and ¥’ mesons in the NRQCD k-factorization
approach

The main color-singlet mechanism for the productiordgf andy’ mesons is shown in Fig.1 (left
panel). We restrict ourselves to the gluon-gluon fusiontmaatsm. In the NLO the dierential cross
section in thek-factorization can be written as:

do(pp — J/ygX) __1 fd2qlt d?g AT
dy 3740y 023y 102 Py ¢ 1671282 99" =3Iy

x 6% (Gt + Gt = Pt — Pyt) Fy (X0, Oy 1)y (Xo O 11E) - )

We calculate the dominant color-singje — J/¥g contribution taking into account transverse mo-
menta of initial gluons. The corresponding matrix elemejissed for theyg — J/yg is

|M.t/g—>3/¢g|2 o 02|R(O)|2 . (2

The matrix element is taken from [10]. In our calculation w@ase the scale of the running coupling
constant as:

0/3 - as(ﬂ )as(ﬂz)as(ﬂs) (3)

wherep? = max(g3,, ), u5 = max(ga,, M) andu3 = m¢, where herm is the J/y transverse mass.
The factorization scale in the calculation was takepZas: (m¢ + pt )/2.

Similarly we calculate the P-wayg meson production. Here the lowest-order subproggss
xc is allowed by positiveC-parity of y. mesons.

In the k;-factorization approach the leading-order cross sectiotibfe y. meson production can
be written as:

1 1 —
Opp-ye = fdydz ptdZQt —— My PFy (X, qi,,uﬁ)f,,(xa qgtnulzz)/df ’ 4)
SX1X2 n"é}(c

which can also be used to calculate rapidity and transveoseentum distributions of thg; mesons.
In the last equatiorf, are unintegrated gluon distributions atg,,,. is gg — x. (off-shell) cross
section. The situation is illustrated diagrammaticallyFig.1 (right panel).
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Figure2. Rapidity distribution of)’ meson with KMR (left plots) and mixed UGDFs (KS and KMR, rigihbts).
The ALICE data [4] are shown for comparison.

The matrix element squared for the — y. subprocess is
|Mgg—>)(c|2 o C¥§|R/(O)|2 . (5)

We used the matrix element taken from the Kniehl, Vasin andesgaper [7].
For this subprocess the best choice for running couplingteonis:

af = as(das(s) , (6)

wherey? = max(g3,, n¥) andus = max(q3,, m¢). Abovem is transverse mass of tiye meson.
The factorization scale for the. meson production is fixed a8 = m¢.

3 Results

In Fig.2 we show dferential cross section in rapidity fgr' production at 7 TeV. Our results are
compared with ALICE experimental data [4]. In the left pawel present results for Kimber-Martin-
Ryskin (KMR) UGDF and in the right panel for mixed Kimber-MiarRyskin (KMR) and Kutak-
Stasto (KS) UGDFs. Because KMR alone overshoot experirhdata for rapidity distribution the
best solution is to take the KMR distribution for large x an8l #r small x. Fory’ meson we have to
include only the direct diagram so it’'s easy to compare osultavith experimental data.

For J/y» meson we have to include both diagrams. Below we presertsdsuthese two subpro-
cesses. In Fig.3 we show rapidity distribution for dirdat meson production. We present results for
three diferent values of energy: W 2.76 TeV (left), W=7 TeV (middle) and W= 13 TeV (right).
Our results are compared with ALICE and LHCb experimenttd fta-5].

In Fig.4 we present results for thredidrent values of energy: W 2.76 TeV (left), W=7 TeV
(middle) and W= 13 TeV (right) panel. The dotted lines are fas meson contribution, the dot-
dashed lines are far., meson contributions ant the solid lines are sum of these twponents. The
presented here results are calculated with mixed UGDFs (KMiRKS).

4 Conclusion

We have calculated the color-singlet contribution in theQ@D k;-factorization and compared our
results with ALICE and LHCb data. Our results in rapidity alenost consistent or even exceed
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Figure 3. Rapidity distribution ofJ/y» meson with KMR (upper plots) and mixed UGDFs (Kutak-Stastd a
KMR). The ALICE and LHCb data points [1-5] are shown for comigan.
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Figure 4. Rapidity distribution ofy. meson with mixed UGDFs (Kutak-Stasto and KMR). The ALICE and
LHCb data points [1-5] fod/y are shown for comparison.

experimental data. Cross section strongly depends on UGDRva think the best solution is to use
mixed UGDFs (KMR-KS). In our approach only small room is kit color-octet contribution.
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