NEAR-THRESHOLD CHARGED KAON PAIR PRODUCTION IN TWO PROTONS COLLISIONS

Damian Gil
Jagiellonian University

OUTLINE

1. Physics motivation
2. COSY-11 detection system
3. $\mathrm{pp} \rightarrow \mathrm{ppK}^{+} \mathrm{K}^{-}$reaction analysis
4. Results and conclusions

1. PHYSICS MOTIVATION

Investigation of the $\mathrm{K}^{+} \mathrm{K}^{-}$and NK interactions

- structure of the scalar mesons $\mathrm{f}_{0}(980)$ and $\mathrm{a}_{0}(980)$ - KK molecules?
M. Bargiotti, et al., Eur. Phys. J. C26, 371 (2003)
N.N. Achasov and G.N. Shestakov, Phys. Rev. D58, 054011 (1998)
- nature of the $\Lambda(1405)$ hyperon $-\mathrm{K}^{-} p$ bound state? J.M.M. Hall et al., Phys. Rev. Lett. 114, 132002 (2015)
- properties of kaons inside dense baryonic matter P. Moskal et al., J. Phys. G 28, 1777 (2002)
- structure of the neutron stars
Y. Lim et al., Phys. Rev. C 89, 055804 (2014)

$\mathrm{pp} \rightarrow \mathrm{ppK}^{+} \mathrm{K}^{-}$excitation function

- phase space factor multiplied by pp-FSI factor underestimates the low energy data
- inclusion of $\mathrm{K}^{-} p-$-FSI is not sufficient to describe the excitation function
- new experiment at $\mathrm{Q}=4.5 \mathrm{MeV}$

2. COSY-11 DETECTION SYSTEM

COSY-11 detection system

- internal H_{2} cluster target
- COSY dipole magnet
- drift chambers D1 and D2
- scintillation hodoscopes S1, S2 and S3
- silicon pad detector inside the dipole gap

3. $\mathrm{pp} \rightarrow \mathrm{ppK}^{+} \mathrm{K}^{-}$REACTION ANALYSIS

Positive charged particles momentum determination

- in horizontal plane: D1 and D2 tracks are traced back in the magnetic field to the target point
- in vertical plane: target profile distribution is determined

pp identification

- known momentum
- velocity calculation from time-of-flight between S1 (or S2) and S3
- S2 helps to separate two protons hitting one S1 segment

K^{+}identification

- K^{+}is not measured in S3
- K^{+}identification is based on time-offlight between target and S1

K^{+}identification

- K^{+}is not measured in S3
- K^{+}identification is based on time-offlight between target and S1
- Monte Carlo: K^{+}is registered in S1 segment from 9 to 12

K^{-}identification

- the $\mathrm{ppK}^{+} \mathrm{K}^{-}$events signature: invariant mass value equals to the K^{+}mass and missing mass value equals to the K^{-}mass
- no signal inside 30 region
- experimental background from other reactions

Reaction	Events
$p p \rightarrow p p \pi^{+} \pi^{-}$	2
$p p \rightarrow p p \pi^{0} \pi^{+} \pi^{-}$	6
$p p \rightarrow p p 2 \pi^{+} 2 \pi^{-}$	10
$p p \rightarrow p p 2 \pi^{0} \pi^{+} \pi^{-}$	1
$p p \rightarrow p K^{+} \Lambda$	0
$p p \rightarrow p p 3 \pi^{0} \pi^{+} \pi^{-}$	4
$p p \rightarrow p p \pi^{0} 2 \pi^{+} 2 \pi^{-}$	10
$p p \rightarrow \mathrm{pK}^{+} \Sigma^{0}$	0

Luminosity determination

- proton scattered in the forward direction: bent in the magnetic field and registered in D1, D2 and S1
- recoil proton: detected in the position sensitive silicon pad detector Simon

Proton scattered in the forward direction

- reconstruction of the momentum at the target
- from kinematics: parallel (pL) and perpendicular (рт) momentum vector components form an ellipse
- 4σ cut on the distance to the theoretical ellipse helps to remove the background events

Elastic scattered protons correlation

- both protons scattering angles are kinematically connected
- angular range covered by the S 1 detector is divided into nine 2° intervals
- projection of the data along the correlation line is determined for each interval separately

Integrated luminosity

- elastic cross sections from measurements performed by the EDDA collaboration
- integrated luminosity equals to $1.52 \pm 0.03_{\text {stat }} \pm 0.07_{\text {syst }} \mathrm{pb}^{-1}$

D. Albers et al., A precision measurement of pp elastic scattering cross-sections at intermediate energies, Eur. Phys. J. A22 (2004) 125-148

Luminosity verification

- pp $\rightarrow p p \omega$ and $p p \rightarrow p p \eta$ ' events above background

Luminosity verification

- pp $\rightarrow p p \omega$ and $p p \rightarrow p p \eta^{\prime}$ events above background
- detection efficiency:
$\mathrm{pp} \rightarrow \mathrm{pp} \mathrm{\omega}=0.06 \%$
pp $\rightarrow \mathrm{pp} \mathrm{\eta} \eta^{\prime}=0.76 \%$
- total cross sections:
$\sigma_{\text {tot }}(p p \omega)=38.51 \mu$ bat $\mathrm{Q}=210 \mathrm{MeV}$
$\sigma_{\text {tot }}\left(\mathrm{pp} \mathrm{\eta} \eta^{\prime}\right)=308.86 \mathrm{nb}$ at $\mathrm{Q}=34 \mathrm{MeV}$

4. RESULTS AND CONCLUSIONS

Results (preliminary)

- no events from $\mathrm{pp} \rightarrow \mathrm{ppK}^{+} \mathrm{K}^{-}$reaction was observed
- upper limit for confidence level 95% equals to 3 events
- efficiency from the Monte Carlo simulation equals to 2.83\%
- luminosity from the elastic scattering equals to $1.52 \mathrm{pb}^{-1}$
\hookrightarrow upper limit for $\sigma_{\text {tot }}\left(p p \rightarrow \mathrm{ppK}^{+} \mathrm{K}^{-}\right)$at $\mathrm{Q}=4.5 \mathrm{MeV}$ equals to 0.070 nb

Conclusions

- calculations based on pp-FSI and $\mathrm{pK}^{-}-\mathrm{FSI}$ with apK $=(-0.65+0.78 i) \mathrm{fm}$ underestimate the experimental results (Y. Yan, arXiv:0905.4818)

Conclusions

- calculations based on pp-FSI and $\mathrm{pK}^{-}-\mathrm{FSI}$ with apK $=(-0.65+0.78 i) \mathrm{fm}$ underestimate the experimental results (Y. Yan, arXiv:0905.4818)
- adding $\mathrm{K}^{+} \mathrm{K}^{-}-\mathrm{FSI}$ parameterized with the effective range approximation with $\mathrm{aKK}_{\mathrm{K}}=8.0 \mathrm{fm}$ and $\mathrm{b}_{\mathrm{KK}}=(-0.1+1.2 i) \mathrm{fm}$ overestimates the new upper limit
(M. Silarski et al., Phys. Rev. C88, 025205 (2013))

Thank you for your attention

