NEAR-THRESHOLD CHARGED KAON PAIR PRODUCTION IN TWO PROTONS COLLISIONS

Damian Gil Jagiellonian University

OUTLINE

- 1. Physics motivation
- 2. COSY-11 detection system
- 3. $pp \rightarrow ppK^+K^-$ reaction analysis
- 4. Results and conclusions

1. PHYSICS MOTIVATION

Investigation of the K⁺K⁻ and NK interactions

• structure of the scalar mesons f₀(980) and a₀(980) - KK molecules?

M. Bargiotti, et al., Eur. Phys. J. C26, 371 (2003) N.N. Achasov and G.N. Shestakov, Phys. Rev. D58, 054011 (1998)

- nature of the Λ(1405) hyperon K⁻p bound state?
 J.M.M. Hall et al., Phys. Rev. Lett. 114, 132002 (2015)
- properties of kaons inside dense baryonic matter P. Moskal et al., J. Phys. G 28, 1777 (2002)
- structure of the neutron stars Y. Lim et al., Phys. Rev. C 89, 055804 (2014)

$pp \rightarrow ppK^+K^-$ excitation function

- phase space factor multiplied by pp-FSI factor underestimates the low energy data
- inclusion of K⁻p-FSI is not sufficient to describe the excitation function
- new experiment at Q = 4.5 MeV

C. Wilkin, AIP Conf. Proc. 950, 23 (2007)

2. COSY-11 DETECTION SYSTEM

COSY-11 detection system

- internal H₂ cluster target
- COSY dipole magnet
- drift chambers D1 and D2
- scintillation hodoscopes S1, S2 and S3
- silicon pad detector inside the dipole gap

3. pp \rightarrow ppK⁺K⁻ REACTION ANALYSIS

Positive charged particles momentum determination

- in horizontal plane: D1 and D2 tracks are traced back in the magnetic field to the target point
- in vertical plane: target profile distribution is determined

pp identification

- known momentum
- velocity calculation from time-of-flight between S1 (or S2) and S3
- S2 helps to separate two protons hitting one S1 segment

K⁺ identification

- K⁺ is not measured in S3
- K⁺ identification is based on time-offlight between target and S1

K⁺ identification

- K⁺ is not measured in S3
- K⁺ identification is based on time-offlight between target and S1
- Monte Carlo: K⁺ is registered in S1 segment from 9 to 12

K⁻ identification

- the ppK⁺K⁻ events signature: invariant mass value equals to the K⁺ mass and missing mass value equals to the K⁻ mass
- no signal inside 3σ region
- experimental background from other reactions

Reaction	Events
pp → ppπ ⁺ π ⁻	2
pp → ppπ ⁰ π ⁺ π ⁻	6
$pp \rightarrow pp2\pi^{+}2\pi^{-}$	10
$pp \rightarrow pp2\pi^0\pi^+\pi^-$	1
$pp \rightarrow pK^{+}\Lambda_{A}$	0
pp → pp3π ⁰ π ⁺ π ⁻	4
$pp \rightarrow pp\pi^0 2\pi^+ 2\pi^-$	10
$pp \rightarrow pK^+\Sigma^0$	0

Luminosity determination

- proton scattered in the forward direction: bent in the magnetic field and registered in D1, D2 and S1
- recoil proton: detected in the position sensitive silicon pad detector Simon

Proton scattered in the forward direction

- reconstruction of the momentum at the target
- from kinematics: parallel (pL) and perpendicular (pT) momentum vector components form an ellipse
- 4σ cut on the distance to the theoretical ellipse helps to remove the background events

Elastic scattered protons correlation

- both protons scattering angles are kinematically connected
- angular range covered by the S1 detector is divided into nine 2° intervals
- projection of the data along the correlation line is determined for each interval separately

Integrated luminosity

- elastic cross sections from measurements performed by the EDDA collaboration
- integrated luminosity equals to 1.52 ± 0.03_{stat} ± 0.07_{syst} pb⁻¹

D. Albers et al., A precision measurement of pp elastic scattering cross-sections at intermediate energies, Eur. Phys. J. A22 (2004) 125-148

Luminosity verification

pp → ppω and pp → ppη' events above background

Luminosity verification

- pp → ppω and pp → ppη' events above background
- detection efficiency: $pp \rightarrow pp\omega = 0.06\%$ $pp \rightarrow pp\eta' = 0.76\%$
- total cross sections: $\sigma_{tot}(pp\omega) = 38.51 \ \mu b \ at \ Q = 210 \ MeV$ $\sigma_{tot}(pp\eta') = 308.86 \ nb \ at \ Q = 34 \ MeV$

4. RESULTS AND CONCLUSIONS

Results (preliminary)

- no events from $pp \rightarrow ppK^+K^-$ reaction was observed
- upper limit for confidence level 95% equals to 3 events
- efficiency from the Monte Carlo simulation equals to 2.83%
- luminosity from the elastic scattering equals to 1.52 pb⁻¹

 \rightarrow upper limit for $\sigma_{tot}(pp \rightarrow ppK^+K^-)$ at Q = 4.5 MeV equals to 0.070 nb

Conclusions

• calculations based on pp-FSI

and pK⁻-FSI with a_{pK} = (-0.65 + 0.78*i*) fm underestimate the experimental results (Y. Yan, arXiv:0905.4818)

C. Wilkin, AIP Conf. Proc. 950, 23 (2007)

Conclusions

• calculations based on pp-FSI

and pK⁻-FSI with a_{pK} = (-0.65 + 0.78*i*) fm underestimate the experimental results (Y. Yan, arXiv:0905.4818)

 adding K⁺K⁻-FSI parameterized with the effective range approximation with a_{KK} = 8.0 fm and b_{KK} = (-0.1 + 1.2*i*) fm overestimates the new upper limit (M. Silarski et al., Phys. Rev. C88, 025205 (2013))

C. Wilkin, AIP Conf. Proc. 950, 23 (2007)

Thank you for your attention