

Search for new physics in rare decays of B-mesons at ATLAS

Darren Price (on behalf of the ATLAS experiment) MESON 2016 14th International Workshop on Meson Production, Properties and Interactions Krakow, Poland, June 2nd `16

MAN

Decays of $B^{O}_{(s)} \rightarrow \mu^{+}\mu^{-}$ must proceed via flavour changing neutral currents:

- Loop and helicity suppressed decay
- Very sensitive to New Phenomena: both constructive/destructive interference possible

Purely leptonic final state: theoretically and experimentally very clean

Decays of $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ must proceed via flavour changing neutral currents:

- Loop and helicity suppressed decay
- Very sensitive to New Phenomena: both constructive/destructive interference possible

Purely leptonic final state: theoretically and experimentally very clean

SM predictions:

Br(B⁰_s→ $\mu^+\mu^-$) = (3.65±0.23)×10⁻⁹ Br(B⁰→ $\mu^+\mu^-$) = (1.06±0.09)×10⁻¹⁰

C. Bobeth et al., PRL 112 (2104) 101801

MANC

SM predictions: $Br(B^{0} \rightarrow u^{+}u^{-}) = (3.6)$

Br(B⁰_s→ $\mu^+\mu^-$) = (3.65±0.23)×10⁻⁹ Br(B⁰→ $\mu^+\mu^-$) = (1.06±0.09)×10⁻¹⁰

C. Bobeth et al., PRL 112 (2104) 101801

MANCHESTER

• Trigger events based on di-muon signature: $p_T(\mu)>4$ (4, 6) GeV

Analysis overview

- Select well-reconstructed di-muon candidate events in invariant mass range 4766–5966 MeV.
 Range [5166–5526] MeV blinded until entire analysis chain defined m(B^o_s)=5367 MeV, m(B^o)=5280 MeV
- Extract signal yield from data using unbinned maximum likelihood fit (UBML) Multivariate analysis using two distinct BDTs trained for background suppression Data-driven control regions for cross-checks and background modelling
- Normalise signal to B[±]→J/ψ(→μ⁺μ⁻)K[±] signal
 Reference signal decay provides partial systematics cancellation

MANCHESTER

Measure $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ with respect to $B^{\pm} \rightarrow J/\psi(\rightarrow \mu + \mu)K^{\pm}$ reference channel:

$$\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-) = \frac{N_{B_{d(s)}}}{\varepsilon_{\mu^+ \mu^-}} \times \frac{\varepsilon_{J/\psi K^{\pm}}}{N_{J/\psi K^{\pm}}}$$

Extract yields of signal and reference from UBML fits Correct each channel for efficiencies

MANCHESTER

Measure $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ with respect to $B^{\pm} \rightarrow J/\psi(\rightarrow \mu + \mu)K^{\pm}$ reference channel:

$$\mathcal{B}(B_{(s)}^0 \to \mu^+ \mu^-) = \frac{N_{B_{d(s)}}}{\varepsilon_{\mu^+ \mu^-}} \times \frac{\varepsilon_{J/\psi K^{\pm}}}{N_{J/\psi K^{\pm}}} \times \frac{f_u}{f_{d(s)}}$$

Correct for hadronisation probability differences Use ATLAS measurement = 0.240±0.020 and isospin symmetry PRL 11 (2015) 262001, arXiv:1507.08925

MANCHESTER

Measure $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ with respect to $B^{\pm} \rightarrow J/\psi(\rightarrow \mu + \mu)K^{\pm}$ reference channel:

$$\mathcal{B}(B_{(s)}^{0} \to \mu^{+} \mu^{-}) = \frac{N_{B_{d(s)}}}{\varepsilon_{\mu^{+} \mu^{-}}} \times \frac{\varepsilon_{J/\psi K^{\pm}}}{N_{J/\psi K^{\pm}}} \times \frac{f_{u}}{f_{d(s)}}$$
$$\times \left[\mathcal{B}(B^{\pm} \to J/\psi K^{\pm}) \times \mathcal{B}(J/\psi \to \mu^{+} \mu^{-})\right]$$

Account for reference channel branching fractions

MANCHESTER

Modify previous formula slightly to account for changing trigger conditions:

$$\mathcal{B}(B_{(s)}^{0} \to \mu^{+} \mu^{-}) = N_{B_{d(s)}} \times \frac{f_{u}}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{norm}}$$
$$\times \left[\mathcal{B}(B^{\pm} \to J/\psi K^{\pm}) \times \mathcal{B}(J/\psi \to \mu^{+} \mu^{-}) \right]$$
$$\mathcal{D}_{norm} = \sum_{k} N_{J/\psi K^{\pm}}^{k} \alpha_{k} \left(\frac{\varepsilon_{\mu^{+} \mu^{-}}}{\varepsilon_{J/\psi K^{\pm}}} \right)_{k}$$

Above term captures changing reference channel yields and efficiency ratios for different trigger streams across 7 and 8 TeV data-taking

ESTER

MANCH

Signal separated from uncorrelated b(\rightarrow c) \rightarrow µ background with MVA classifier Background x10³ larger than next largest (semi-leptonic) background Use 15 variables related to B candidate, muons, tracks in event

Signal efficiency = 54%, for a 5x10³ background rejection

ESTER

MANCE

B-decays with two real muons look like signal but accumulate at low mass: modelled with Monte Carlo simulations

Events / 40 MeV

Same-vertex (SV) backgrounds $B_d \rightarrow K^* \mu^+ \mu^-, B_c \rightarrow J/\psi(\rightarrow \mu^+ \mu^-)\mu^+ \nu$

> Same-side (SS) backgrounds $b \rightarrow \mu^{-}c(\rightarrow \mu^{+}X')X$

> > Semi-leptonic $B \rightarrow \mu h \nu$

Dimuon mass [MeV]

STER

MAN

Train dedicated fake BDT classifier against hadron misidentification

MANCHESTER

UBML fit applied to J/ ψK^{\pm} and J/ $\psi \pi^{\pm}$ data simultaneously

- Four-component fit for PRDs, combinatorial background, K[±]/π[±] signal
- Continuum BDT and fake BDT selections applied to B[±] reference

Reference channel: B[±] yield extraction

Signal yield extracted from UBML fit to dimuon invariant mass distribution

Extracted simultaneously in three categories in three continuum BDT ranges (each with constant signal efficiency = 18%)

MANCHESTER

Expected signal yield: $N(B_c) = 41$, N(B) = 5(Exp. significance $B_s = 3.1\sigma$, $B_d = 0.2\sigma$)

Fit results

Observed fitted signal yield: $N_{obs}(B_s) = 16 \pm 12, N_{obs}(B) = -11 \pm 9$

 $N_{obs}(B_s) = 11$, $N_{obs}(B) = 0$ when constraining $N \ge 0$

Events / 40 MeV

18

16

14

12

10F

8

6

4800

ATLAS

5000

Determine branching fraction with non-negative boundary condition

Uncertainties obtained with Neyman construction of frequentist confidence belt including statistical and systematic uncertainties (σ_{syst} =±0.3x10⁻⁹)

 $Br(B_{s}^{O} \rightarrow \mu^{+}\mu^{-}) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$

Upper limits from CL_s approach:

Br(B⁰ $_{s} \rightarrow \mu^{+}\mu^{-}$) < 3.0×10⁻⁹ at 95% CL

Observed compatibility with null (background-only) hypothesis:

p=0.08 (1.4*o*)

Expectation for SM signal:

р=0.0011 (3.1 *о*)

ESTER

MANCH

Upper limit on branching fraction for B_d determined using CL_s technique: Br($B^0_d \rightarrow \mu^+\mu^-$) < 4.2×10⁻¹⁰ at 95% CL

 $B^{0}_{d} \rightarrow \mu^{+}\mu^{-}$ branching fraction measurement

Expected limit < 5.7^{+2.1}-1.2×10⁻¹⁰

In conjunction with B_s results is compatible with the SM at: p=0.048 (2.0 *o*)

MANCHESTER Results: $B_s^0 \rightarrow \mu^+ \mu^- vs$. $B_d^0 \rightarrow \mu^+ \mu^- contour$

The University of Manchester

CERN-EP-2016-064, arXiv:1604.04263, Submitted to EPJC

Likelihood contours without imposing natural boundaries

19

The University of Manchester

MANCHESTER

Using the data collected during Run-1 of the LHC, ATLAS has new results on the rare decays B⁰_s and B⁰ into muon pairs

Uncertainties competitive with CMS and LHCb

Summary

Observe the following results:

Br(B⁰_s→ $\mu^+\mu^-$) = (0.9^{+1.1}_{-0.8})×10⁻⁹ < 3.0×10⁻⁹ at 95% CL Br(B⁰_d→ $\mu^+\mu^-$) < 4.2×10⁻¹⁰ at 95% CL

lower than the SM prediction

 $Br_{SM}(B^{O}_{s} \rightarrow \mu^{+}\mu^{-}) = (3.65 \pm 0.23) \times 10^{-9}$ $Br_{SM}(B^{O} \rightarrow \mu^{+}\mu^{-}) = (1.06 \pm 0.09) \times 10^{-10}$

Compatibility with the SM is 2.0 σ in the simultaneous fit, leaving room for destructive interference from NP to the SM rate.

Analysis of Run-2 data (~100 fb⁻¹) expected to significantly enhance sensitivity.

Backup

MANCH

Minimum p_T thresholds on muons driven by trigger:

7 TeV data: $p_T(\mu)>4$ GeV, $|\eta(\mu)|<2.5$ 8 TeV data split into three exclusive categories: 8 TeV (T1): One muon $p_T(\mu)>6$ GeV, other $p_T(\mu)>4$ GeV, $|\eta(\mu)|<2.5$ 8 TeV (T2): Both $p_T(\mu)>4$ GeV and at least one in $|\eta(\mu)|<1.05$ 8 TeV (T3): Both $p_T(\mu)>4$ GeV and $1.05 \le |\eta(\mu)|<2.5$

Trigger and event selection

- Both selected muons must be Combined (Inner Detector and Muon Spectrometer muon track reconstruction)
- $B^{O}_{(s)} \rightarrow \mu^{+}\mu^{-}$ signal, and $B^{\pm} \rightarrow J/\psi(\rightarrow \mu + \mu -)K^{\pm}$, $B_{s} \rightarrow J/\psi(\rightarrow \mu + \mu -)\phi(K^{+}K^{-})$ reference:
 - Di-muon vertex fit
 - Association to primary vertex
 - Fiducial region: p_T(B)> 8 GeV, |η(B)|<2.5

MANCHESTER

Background contributions to search (in decreasing size):

1. Combinatorial background

Real muons from uncorrelated $b(\rightarrow c) \rightarrow \mu$ decays

2. Partially-reconstructed B decays

Real muons coming from $B \rightarrow \mu \mu + X$ decays Single pion/kaon misidentified as muon (semi-leptonic B and B_s decays)

3. Peaking backgrounds

 $B_s/B_d \rightarrow hh'$ (h= $\pi/K/p$). Small component, but dangerous as overlaid on signal!

MANCH

Partially-reconstructed decays for B[±] reference channel

B_(s) signal yield extraction/modelling

The University of Manchester

MAN

Signal yield extracted from UBML fit to dimuon invariant mass distribution

Extracted simultaneously in three categories in three continuum BDT ranges (each with constant signal efficiency = 18%)

BDT ranges: [0.242-0.351], [0.351-0.454], [0.454-1.0]

Dimuon mass [MeV]

Signal:

Two superimposed Gaussians;

Common mean, avg. with 80 MeV, shape constrained across BDT Low mass background:

Exponential with mass (SS+SV)

Shape constrained across BDT, normalisation independent

Continuum background:

Linear with mass: small correlation with BDT interval consistent with sidebands/MC **Peaking background**:

Gaussian; equal amplitude in each BDT bin, constrained to 1.0±0.4 total

Rare

^{TER} Efficiency correction

The University of Manchester

MANCH

Reference-to-signal efficiency correction $\left(\frac{\varepsilon_{\mu^+\mu^-}}{\varepsilon_{J/\psi K^\pm}}\right)$

- p_T-η spectra tuned on reference channels
- Trigger efficiency from data-driven tag-and-probe
- MC-data comparison on discriminating variables in BDT
- only isolation needs tuning for B[±] mode
- for B_(s) additional correction due to lifetime needed

Correction to ratio \sim +3-4% for B⁰, -0.6% for B⁰_s

Total systematic uncertainty from efficiency = 5.9%

(includes effect of reweighting all 15 variables entering cBDT with B^{\pm} data, trigger efficiency, $p_T - \eta$ reweighting, uncertainties on B^{\pm} and K^{\pm} reconstruction)

MANCHESTER ATLAS Inner Tracker Upgrade: Run-2 IBL

The University of Manchester

CERN-LHCC-2010-013

Inner B-Layer (IBL) upgrade for Run-2 Additional pixel layer, small radius: 33.25 mm (current B-layer at 50.5 mm)

Fourth pixel layer provides improved d_0 and z_0 resolution, and θ and ϕ resolution at low p_T (~ 1 GeV)

- Level-1 'topological' triggers introduced to ATLAS for Run-2 New on-board algorithms allow trigger rate reduction of 2–5 at Level-1 Coarse topological RoI information added to di-muon signatures
- Parameters such as $\Delta \phi$, $\Delta \eta$, ΔR , invariant mass of muon pairs can be selected to optimise signal selection / background rejection

MANCHESTER

MANCH

Significant signal gain for fixed L1 trigger rates from L1topo implementation

Detailed description of c-BDT variables

The University of Manchester

MANCHESTER

1824

Variable	Description
p_{T}^B	Magnitude of the <i>B</i> candidate transverse momentum $\overrightarrow{p_{\mathrm{T}}}^B$.
$\chi^2_{\rm PV,DV} _{xy}$	Significance of the separation $\overrightarrow{\Delta x}$ between production (<i>i.e.</i> associated PV) and decay (DV) vertices in the transverse projection: $\overrightarrow{\Delta x}_{T} \cdot \Sigma_{\overrightarrow{\Delta x}_{T}}^{-1} \cdot \overrightarrow{\Delta x}_{T}$, where $\Sigma_{\overrightarrow{\Delta x}_{T}}$ is the covariance matrix.
ΔR	three-dimensional opening between \overrightarrow{p}^B and $\overrightarrow{\Delta x}$: $\sqrt{\alpha_{2D}^2 + \Delta \eta^2}$
$ lpha_{ m 2D} $	Absolute value of the angle between $\overrightarrow{p_{T}}^{B}$ and $\overrightarrow{\Delta x_{T}}$ (transverse projection).
L_{xy}	Projection of $\overrightarrow{\Delta x_{\mathrm{T}}}$ along the direction of $\overrightarrow{p}_{\mathrm{T}}^{B}$: $(\overrightarrow{\Delta x_{\mathrm{T}}} \cdot \overrightarrow{p_{\mathrm{T}}}^{B})/ \overrightarrow{p_{\mathrm{T}}}^{B} $.
$\mathrm{IP}_B^{\mathrm{3D}}$	three-dimensional impact parameter of the B candidate to the associated PV.
$DOCA_{\mu\mu}$	Distance of closest approach (DOCA) of the two tracks forming the B candidate (three-dimensional).
$\Delta \phi_{\mu\mu}$	Difference in azimuthal angle between the momenta of the two tracks forming the B candidate.
$ d_0 ^{\max}$ -sig.	Significance of the larger absolute value of the impact parameters to the PV of the tracks forming the B candidate, in the transverse plane.
$ d_0 ^{\min}$ -sig.	Significance of the smaller absolute value of the impact parameters to the PV of the tracks forming the B candidate, in the transverse plane.
$P_{ m L}^{ m min}$	Value of the smaller projection of the momenta of the muon candidates along $\overrightarrow{p_{\mathrm{T}}}^B$.
<i>I</i> _{0.7}	Isolation variable defined as ratio of $ \vec{p_T}^B $ to the sum of $ \vec{p_T}^B $ and of the transverse momenta of all additional tracks contained within a cone of size $\Delta R < 0.7$ around the <i>B</i> direction. Only tracks with $p_T > 0.5$ GeV and matched to the same PV as the <i>B</i> candidate are included in the sum.
$\mathrm{DOCA}_{\mathrm{xtrk}}$	DOCA of the closest additional track to the decay vertex of the B candidate. Tracks matched to a PV different from the B candidate are excluded.
$N_{ m xtrk}^{ m close}$	Number of additional tracks compatible with the decay vertex (DV) of the <i>B</i> candidate with $\ln(\chi^2_{\text{xtrk,DV}}) < 1$. The tracks matched to a PV different from the <i>B</i> candidate are excluded.
$\chi^2_{\mu,\mathrm{xPV}}$	Minimum χ^2 for the compatibility of a muon in the <i>B</i> candidate with a PV different from the one associated with the <i>B</i> candidate.

MANCHESTER

1824

Correlations on discriminating variables entering the continuum BDT

ATLAS Simulation

BDT correlations

After continuum–BDT selection

MANCHESTER

Systematic uncertainties entering branching fraction extraction

	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$\mathcal{B}(B^0 \to \mu^+ \mu^-)$	
Scale uncertainties			
$\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu\mu)$ branching fractions	3.1%	3.1%	
$B^{0}_{(s)}/B^{+}$ production ratio	8.3%	0	
B^+ yield and $B^0_{(s)}/B^+$ efficiency ratio	5.9%	5.9%	
Relative efficiency of continuum-BDT intervals	9%	9%	
Signal and background model	6%	0	
Total scale uncertainty	16%	11%	
Offset uncertainties			
Signal and background model	0.2×10^{-9}	0.7×10^{-10}	