$\eta^{\prime}-\pi$ production and search for exotic mesons at COMPASS and JLab12

Vladiszlav Pauk
JPAC @ JLab

OUTLINE

- motivation and context: exotic states of OCD spectrum
- phenomenology and formalism: peripheral meson production @ GlueX \& COMPASS
- data analysis: $\eta \pi$ production @ COMPASS
- model and theoretical analysis: Regge formalism and finite-energy sum rules (FESR)
- summary and outlook: GlueX and expectations

OCD SPECTRUM AND EXOTIC HADRONS

OCD SPECTRUM AND EXOTIC HADRONS

SEARCHES FOR HYBRIDS IN PERIPHERAL PRODUCTION-3-

$$
I^{G} J P C=1^{-1} \quad \text { decay modes } \quad \pi \eta, \pi \eta^{\prime}, \pi \rho, \pi a_{1}, \pi b_{1}, \pi f_{1}
$$

SEARCHES FOR HYBRIDS IN PERIPHERAL PRODUCTION-3-

$$
I^{G} J^{P C}=1-1^{-+} \quad \text { decay modes } \quad \pi \eta, \pi \eta^{\prime}, \pi \rho, \pi a_{1}, \pi b_{1}, \pi f_{1}
$$

SEARCHES FOR HYBRIDS IN PERIPHERAL PRODUCTION -3-

Forthcoming data

$$
y p \rightarrow X p \rightarrow \eta^{\left({ }^{\prime}\right)} \pi p
$$

Glue on 12 GeV electron beam @ Jab

PERIPHERAL PRODUCTION IN REGGE MODEL

@ large energy

Regge exchange

Reggeon-particle amplitude

PERIPHERAL PRODUCTION IN REGGE MODEL

@ large energy

Regge exchange
Reggeon-particle amplitude well-defined quantum numbers for each Regge exchange
discontinuity only
in the s-channel invariant mass
dispersion relation
at fixed t
no overlapping discontinuities
in invariant masses
\square
Reggeization

Cauchy integral theorem

PHENOMENOLOGY OF $\eta \pi$ PRODUCTION AT COMPASS -6-

Single-Regge limit

$$
A=K R(s) \sum_{J, \lambda} \frac{N_{J}\left(s_{1}\right)}{D_{J}\left(s_{1}\right)} d_{\lambda 0}^{J}(\theta) e^{i \lambda \phi}
$$

Gottfried-Jackson angles

$$
\begin{gathered}
\cos \theta=a^{\prime}+b^{\prime} t_{1}+c t_{1}^{2} \\
\cos \phi=a+b \frac{s_{2}}{s}
\end{gathered}
$$

$$
u_{1}-\text { (beam mom. transfer) }^{2}
$$

forward η amplitude

$$
A_{u}^{R}=K R\left(s_{1}, u_{1}\right) R\left(s_{2}\right) V(\omega)
$$

conservation of parity and angular momentum

threshold behavior
$q=\sqrt{\left(s_{1}-\left(m_{\pi}+m_{\eta}\right)^{2}\right)\left(s_{1}-\left(m_{\pi}-m_{\eta}\right)^{2}\right)}$
partial-wave amplitudes

$$
A_{L}=\int A(\Omega) Y_{L}(\Omega) \mathrm{d} \Omega
$$

L-orbital angular momentum

Pomeron exchange contribution

$$
A \sim s_{1} e^{\alpha^{\prime} t \log s_{1}}
$$

asymptotic behavior of the P-wave

$$
A_{1} \sim \frac{1}{\log s_{1}}
$$

conservation of parity and angular momentum
$A_{L} \rightarrow K_{L} A_{L}$
threshold behavior

$$
K_{L} \sim q^{L}
$$

partial-wave amplitudes

$$
A_{L}=\int A(\Omega) Y_{L}(\Omega) \mathrm{d} \Omega
$$

$$
q=\sqrt{\left(s_{1}-\left(m_{\pi}+m_{\eta}\right)^{2}\right)\left(s_{1}-\left(m_{\pi}-m_{\eta}\right)^{2}\right)}
$$

L -orbital angular momentum

Pomeron exchange contribution

$$
A \sim s_{1} e^{\alpha^{\prime} t \log s_{1}}
$$

asymptotic behavior of the P-wave

$$
A_{1} \sim \frac{1}{\log s_{1}}
$$

normalization constrained by sum rules

FINITE-ENERGY SUM RULE

FESR for forward-backward asymmetry

$$
\int_{0}^{N} \mathrm{~d} s_{1} \operatorname{Im} A_{\text {even } / o d d}\left(s_{1}\right)=\sum_{R} N^{\alpha_{R}} V_{R}
$$

symmetric combination:
non-exotic
even partial waves
exchanges: $\mathrm{P}+\mathrm{f}_{2}+\mathrm{a}_{2}$
antisymmetric combination:
exotic
odd partial waves
exchanges: $\mathrm{P}+\mathrm{f}_{2}-\mathrm{a}_{2}$

FESR for forward-backward asymmetry

$$
\int_{0}^{N} \mathrm{~d} s_{1} \operatorname{Im} A_{\text {even } / \text { odd }}\left(s_{1}\right)=\sum_{R} N^{\alpha_{R}} V_{R}
$$

symmetric combination:
non-exotic
even partial waves exchanges: $\mathrm{P}+\mathrm{f}_{2}+\mathrm{a}_{2}$
antisymmetric combination:
exotic
odd partial waves exchanges: $P+f_{2}-a_{2}$
expansion in powers of $\mathbf{s}_{2} / \mathrm{s}$

$$
\longrightarrow \int_{0}^{N} \mathrm{~d} s_{1} \operatorname{Im} A_{L}\left(s_{1}\right)=\sum_{R, i} C_{L}^{(i)}(N) V_{R}^{(i)}
$$

coherent contributions from larger angular momenta
stabilize
photoproduction
@ GlueX
$y p \rightarrow X p \rightarrow \pi \eta p$

- construct fitting functions for the single- and double-diffractive regime using Regge formalism; parametrize the low-energy amplitude within N/D formalism
- extract the parameters of the reggeon-particle amplitude
- analyze correlation between low- and high-energy regions using FESR

- construct fitting functions for the single- and double-diffractive regime using Regge formalism; parametrize the low-energy amplitude within N/D formalism
- extract the parameters of the reggeon-particle amplitude
- analyze correlation between low- and high-energy regions using FESR

expectations

- non-trivial correlation between production of exotic states and violation of exchange degeneracy
- sensitivity to the gluon component of η^{\prime}

