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‣ motivation and context: exotic states of QCD spectrum 

‣ phenomenology and formalism: peripheral meson production          

@ GlueX & COMPASS 

‣ data analysis: ηπ production @ COMPASS 

‣ model and theoretical analysis: Regge formalism and                  

finite-energy sum rules (FESR) 

‣ summary and outlook: GlueX and expectations
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general features of the model 

aim: first systematic analysis  
of peripheral production using FESR
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Fig. 4. Intensities of the L = 1–6, M = 1 partial waves from the partial-wave analysis of the η′π− data in mass bins of 40 MeV/c2 width (circles). Shown for comparison 
(triangles) are the ηπ− results scaled by the relative kinematical factor given in Eq. (7).

For a detailed comparison of the results from the mass-
independent PWA of both channels, their different phase spaces 
and angular-momentum barriers are taken into account. For the 
decay of pointlike particles, transition rates are expected to be 
proportional to

g(m, L) = q(m) × q(m)2L (6)

with break-up momentum q(m) [30–32]. Overlaid on the PWA re-
sults for η′π− in Fig. 4 are those for ηπ− , multiplied in each bin 
by the relative kinematical factor

c(m, L) = b × g′(m, L)

g(m, L)
, (7)

where g(′) refers to η(′)π− with break-up momentum q(′) , and the 
factor b = 0.746 accounts for the decay branchings of η and η′ into 
π−π+γ γ [26].

By integrating the invariant mass spectra of each partial wave, 
scaled by [g(′)(m, L)]−1, from the η′π− threshold up to 3 GeV/c2, 
we obtain scaled yields I(′)L and derive the ratios

R L = b × I L/I ′L . (8)

As an alternative to the angular-momentum barrier factors q(m)2L

of Eq. (6), we have also used Blatt–Weisskopf barrier factors [33]. 
For the range parameter involved there, an upper limit of r =
0.4 fm was deduced from systematic studies of tensor meson de-
cays, including the present channels [30,31], whereas for r = 0 fm
Eq. (6) is recovered. To demonstrate the sensitivity of R L on the 
barrier model, the range of values corresponding to these upper 
and lower limits is given in Table 1.

The comparison in Fig. 4 reveals a conspicuous resemblance of 
the even-L partial waves of both channels. This feature remains if 
r = 0.4 fm, but the values of R L increase with increasing r (Ta-
ble 1). This similarity is corroborated by the relative phases as 
observed in Figs. 5 (d) and (f). The observed behaviour is expected 
from a quark-line picture where only the non-strange components 
nn̄ (n = u, d) of the incoming π− and the outgoing system are in-
volved. The similar values of R L for L = 2, 4, 6 suggest that the 
respective intermediate states couple to the same flavour content 
of the outgoing system.

306 COMPASS Collaboration / Physics Letters B 740 (2015) 303–311

Fig. 1. Invariant mass spectra (not acceptance corrected) for (a) ηπ− and (b) η′π− . Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data (not acceptance corrected) as a function of the invariant ηπ− (a) and η′π− (b) masses and of the cosine of the decay angle in the respective Gottfried–Jackson 
frames where cosϑGJ = 1 corresponds η(′) emission in the beam direction. Two-dimensional acceptances can be found in Ref. [20].

indicates coherent contributions from larger angular momenta. 
Forward/backward asymmetries (only weakly affected by accep-
tance) occur for all masses in both channels, which indicates 
interference of odd and even partial waves. In the η′π− data, the 
a2(1320) is close to the threshold energy of this channel (1.1 GeV), 
and the signal is not dominant, see also Fig. 1 (b). A forward/back-
ward asymmetric interference pattern, indicating coherent D- and 
P -wave contributions with mass-dependent relative phase, gov-
erns the η′π− mass range up to 2 GeV/c2. In the a4(2040) region, 
well-localised interference is recognised. As for ηπ− , narrow for-
ward/backward peaking occurs at higher mass, but in this case the 
forward/backward asymmetry is visibly larger over the whole mass 
range of η′π− .

The data were subjected to a partial-wave analysis (PWA) using 
a program developed at Illinois and VES [21–23]. Independent fits 
were carried out in 40 MeV/c2 wide bins of the four-body mass 
from threshold up to 3 GeV/c2 (so-called mass-independent PWA). 
Momentum transfers were limited to the range given above.

An η(′)π− partial-wave is characterised by the angular mo-
mentum L, the absolute value of the magnetic quantum number 
M = |m| and the reflectivity ϵ = ±1, which is the eigenvalue of re-
flection about the production plane. Positive (negative) ϵ is chosen 
to correspond to natural (unnatural) spin-parity of the exchanged 
Reggeon with J P

tr = 1− or 2+ or 3− . . . (0− or 1+ or 2− . . . ) trans-
fer to the beam particle [18,24]. These two classes are incoherent.

In each mass bin, the differential cross section as a function of 
four-body kinematic variables τ is taken to be proportional to a 
model intensity I(τ ) which is expressed in terms of partial-wave 
amplitudes ψϵ

LM(τ ),

I(τ ) =
∑

ϵ

∣∣
∣∣
∑

L,M

A
ϵ
LMψ

ϵ
LM(τ )

∣∣
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2

+ non-η
(′) background. (1)

The magnitudes and phases of the complex numbers Aϵ
LM consti-

tute the free parameters of the fit. The expected number of events 
in a bin is

N̄ ∝
∫

I(τ )a(τ )dτ , (2)

where dτ is the four-body phase space element and a(τ ) desig-
nates the efficiency of detector and selection. Following the ex-
tended likelihood approach [25,24], fits are carried out maximis-
ing

ln L ∼ −N̄ +
n∑

k=1

ln I(τk), (3)

where the sum runs over all observed events in the mass bin. 
In this way, the acceptance-corrected model intensity is fit to the 
data.

The partial-wave amplitudes are composed of two parts: a fac-
tor fη ( fη′ ) that describes both the Dalitz plot distribution of the 
successive η (η′) decay [26] and the experimental peak shape, 
and a two-body partial-wave factor that depends on the primary 
η(′)π− decay angles. In this way, the four-body analysis is re-
duced to quasi-two-body. The partial-wave factor for the two spin-
less mesons is expressed by spherical harmonics. Thus, the full 
η(π−π+π0)π− partial-wave amplitudes read

ψ
ϵ
LM(τ ) = fη(pπ− , pπ+ , pπ0) × Y M

L (ϑGJ,0)

×
{ sin MϕGJ for ϵ = +1

cos MϕGJ for ϵ = −1
(4)

and analogously for η′(π−π+η)π− . There are no M = 0, and 
therefore no L = 0 waves for ϵ = +1. The fits require a weak 
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Fig. 1. Invariant mass spectra (not acceptance corrected) for (a) ηπ− and (b) η′π− . Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data (not acceptance corrected) as a function of the invariant ηπ− (a) and η′π− (b) masses and of the cosine of the decay angle in the respective Gottfried–Jackson 
frames where cosϑGJ = 1 corresponds η(′) emission in the beam direction. Two-dimensional acceptances can be found in Ref. [20].

indicates coherent contributions from larger angular momenta. 
Forward/backward asymmetries (only weakly affected by accep-
tance) occur for all masses in both channels, which indicates 
interference of odd and even partial waves. In the η′π− data, the 
a2(1320) is close to the threshold energy of this channel (1.1 GeV), 
and the signal is not dominant, see also Fig. 1 (b). A forward/back-
ward asymmetric interference pattern, indicating coherent D- and 
P -wave contributions with mass-dependent relative phase, gov-
erns the η′π− mass range up to 2 GeV/c2. In the a4(2040) region, 
well-localised interference is recognised. As for ηπ− , narrow for-
ward/backward peaking occurs at higher mass, but in this case the 
forward/backward asymmetry is visibly larger over the whole mass 
range of η′π− .

The data were subjected to a partial-wave analysis (PWA) using 
a program developed at Illinois and VES [21–23]. Independent fits 
were carried out in 40 MeV/c2 wide bins of the four-body mass 
from threshold up to 3 GeV/c2 (so-called mass-independent PWA). 
Momentum transfers were limited to the range given above.

An η(′)π− partial-wave is characterised by the angular mo-
mentum L, the absolute value of the magnetic quantum number 
M = |m| and the reflectivity ϵ = ±1, which is the eigenvalue of re-
flection about the production plane. Positive (negative) ϵ is chosen 
to correspond to natural (unnatural) spin-parity of the exchanged 
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tr = 1− or 2+ or 3− . . . (0− or 1+ or 2− . . . ) trans-
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Fig. 4. Intensities of the L = 1–6, M = 1 partial waves from the partial-wave analysis of the η′π− data in mass bins of 40 MeV/c2 width (circles). Shown for comparison 
(triangles) are the ηπ− results scaled by the relative kinematical factor given in Eq. (7).

For a detailed comparison of the results from the mass-
independent PWA of both channels, their different phase spaces 
and angular-momentum barriers are taken into account. For the 
decay of pointlike particles, transition rates are expected to be 
proportional to

g(m, L) = q(m) × q(m)2L (6)

with break-up momentum q(m) [30–32]. Overlaid on the PWA re-
sults for η′π− in Fig. 4 are those for ηπ− , multiplied in each bin 
by the relative kinematical factor

c(m, L) = b × g′(m, L)

g(m, L)
, (7)

where g(′) refers to η(′)π− with break-up momentum q(′) , and the 
factor b = 0.746 accounts for the decay branchings of η and η′ into 
π−π+γ γ [26].

By integrating the invariant mass spectra of each partial wave, 
scaled by [g(′)(m, L)]−1, from the η′π− threshold up to 3 GeV/c2, 
we obtain scaled yields I(′)L and derive the ratios

R L = b × I L/I ′L . (8)

As an alternative to the angular-momentum barrier factors q(m)2L

of Eq. (6), we have also used Blatt–Weisskopf barrier factors [33]. 
For the range parameter involved there, an upper limit of r =
0.4 fm was deduced from systematic studies of tensor meson de-
cays, including the present channels [30,31], whereas for r = 0 fm
Eq. (6) is recovered. To demonstrate the sensitivity of R L on the 
barrier model, the range of values corresponding to these upper 
and lower limits is given in Table 1.

The comparison in Fig. 4 reveals a conspicuous resemblance of 
the even-L partial waves of both channels. This feature remains if 
r = 0.4 fm, but the values of R L increase with increasing r (Ta-
ble 1). This similarity is corroborated by the relative phases as 
observed in Figs. 5 (d) and (f). The observed behaviour is expected 
from a quark-line picture where only the non-strange components 
nn̄ (n = u, d) of the incoming π− and the outgoing system are in-
volved. The similar values of R L for L = 2, 4, 6 suggest that the 
respective intermediate states couple to the same flavour content 
of the outgoing system.
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Fig. 1. Invariant mass spectra (not acceptance corrected) for (a) ηπ− and (b) η′π− . Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data (not acceptance corrected) as a function of the invariant ηπ− (a) and η′π− (b) masses and of the cosine of the decay angle in the respective Gottfried–Jackson 
frames where cosϑGJ = 1 corresponds η(′) emission in the beam direction. Two-dimensional acceptances can be found in Ref. [20].

indicates coherent contributions from larger angular momenta. 
Forward/backward asymmetries (only weakly affected by accep-
tance) occur for all masses in both channels, which indicates 
interference of odd and even partial waves. In the η′π− data, the 
a2(1320) is close to the threshold energy of this channel (1.1 GeV), 
and the signal is not dominant, see also Fig. 1 (b). A forward/back-
ward asymmetric interference pattern, indicating coherent D- and 
P -wave contributions with mass-dependent relative phase, gov-
erns the η′π− mass range up to 2 GeV/c2. In the a4(2040) region, 
well-localised interference is recognised. As for ηπ− , narrow for-
ward/backward peaking occurs at higher mass, but in this case the 
forward/backward asymmetry is visibly larger over the whole mass 
range of η′π− .

The data were subjected to a partial-wave analysis (PWA) using 
a program developed at Illinois and VES [21–23]. Independent fits 
were carried out in 40 MeV/c2 wide bins of the four-body mass 
from threshold up to 3 GeV/c2 (so-called mass-independent PWA). 
Momentum transfers were limited to the range given above.

An η(′)π− partial-wave is characterised by the angular mo-
mentum L, the absolute value of the magnetic quantum number 
M = |m| and the reflectivity ϵ = ±1, which is the eigenvalue of re-
flection about the production plane. Positive (negative) ϵ is chosen 
to correspond to natural (unnatural) spin-parity of the exchanged 
Reggeon with J P

tr = 1− or 2+ or 3− . . . (0− or 1+ or 2− . . . ) trans-
fer to the beam particle [18,24]. These two classes are incoherent.

In each mass bin, the differential cross section as a function of 
four-body kinematic variables τ is taken to be proportional to a 
model intensity I(τ ) which is expressed in terms of partial-wave 
amplitudes ψϵ
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in a bin is

N̄ ∝
∫

I(τ )a(τ )dτ , (2)

where dτ is the four-body phase space element and a(τ ) desig-
nates the efficiency of detector and selection. Following the ex-
tended likelihood approach [25,24], fits are carried out maximis-
ing

ln L ∼ −N̄ +
n∑

k=1

ln I(τk), (3)

where the sum runs over all observed events in the mass bin. 
In this way, the acceptance-corrected model intensity is fit to the 
data.

The partial-wave amplitudes are composed of two parts: a fac-
tor fη ( fη′ ) that describes both the Dalitz plot distribution of the 
successive η (η′) decay [26] and the experimental peak shape, 
and a two-body partial-wave factor that depends on the primary 
η(′)π− decay angles. In this way, the four-body analysis is re-
duced to quasi-two-body. The partial-wave factor for the two spin-
less mesons is expressed by spherical harmonics. Thus, the full 
η(π−π+π0)π− partial-wave amplitudes read

ψ
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LM(τ ) = fη(pπ− , pπ+ , pπ0) × Y M
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×
{ sin MϕGJ for ϵ = +1

cos MϕGJ for ϵ = −1
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and analogously for η′(π−π+η)π− . There are no M = 0, and 
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Fig. 1. Invariant mass spectra (not acceptance corrected) for (a) ηπ− and (b) η′π− . Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data (not acceptance corrected) as a function of the invariant ηπ− (a) and η′π− (b) masses and of the cosine of the decay angle in the respective Gottfried–Jackson 
frames where cosϑGJ = 1 corresponds η(′) emission in the beam direction. Two-dimensional acceptances can be found in Ref. [20].

indicates coherent contributions from larger angular momenta. 
Forward/backward asymmetries (only weakly affected by accep-
tance) occur for all masses in both channels, which indicates 
interference of odd and even partial waves. In the η′π− data, the 
a2(1320) is close to the threshold energy of this channel (1.1 GeV), 
and the signal is not dominant, see also Fig. 1 (b). A forward/back-
ward asymmetric interference pattern, indicating coherent D- and 
P -wave contributions with mass-dependent relative phase, gov-
erns the η′π− mass range up to 2 GeV/c2. In the a4(2040) region, 
well-localised interference is recognised. As for ηπ− , narrow for-
ward/backward peaking occurs at higher mass, but in this case the 
forward/backward asymmetry is visibly larger over the whole mass 
range of η′π− .

The data were subjected to a partial-wave analysis (PWA) using 
a program developed at Illinois and VES [21–23]. Independent fits 
were carried out in 40 MeV/c2 wide bins of the four-body mass 
from threshold up to 3 GeV/c2 (so-called mass-independent PWA). 
Momentum transfers were limited to the range given above.

An η(′)π− partial-wave is characterised by the angular mo-
mentum L, the absolute value of the magnetic quantum number 
M = |m| and the reflectivity ϵ = ±1, which is the eigenvalue of re-
flection about the production plane. Positive (negative) ϵ is chosen 
to correspond to natural (unnatural) spin-parity of the exchanged 
Reggeon with J P

tr = 1− or 2+ or 3− . . . (0− or 1+ or 2− . . . ) trans-
fer to the beam particle [18,24]. These two classes are incoherent.

In each mass bin, the differential cross section as a function of 
four-body kinematic variables τ is taken to be proportional to a 
model intensity I(τ ) which is expressed in terms of partial-wave 
amplitudes ψϵ

LM(τ ),

I(τ ) =
∑

ϵ

∣∣∣∣
∑

L,M

Aϵ
LMψϵ

LM(τ )

∣∣∣∣
2

+ non-η(′) background. (1)

The magnitudes and phases of the complex numbers Aϵ
LM consti-

tute the free parameters of the fit. The expected number of events 
in a bin is

N̄ ∝
∫

I(τ )a(τ )dτ , (2)

where dτ is the four-body phase space element and a(τ ) desig-
nates the efficiency of detector and selection. Following the ex-
tended likelihood approach [25,24], fits are carried out maximis-
ing

ln L ∼ −N̄ +
n∑

k=1

ln I(τk), (3)

where the sum runs over all observed events in the mass bin. 
In this way, the acceptance-corrected model intensity is fit to the 
data.

The partial-wave amplitudes are composed of two parts: a fac-
tor fη ( fη′ ) that describes both the Dalitz plot distribution of the 
successive η (η′) decay [26] and the experimental peak shape, 
and a two-body partial-wave factor that depends on the primary 
η(′)π− decay angles. In this way, the four-body analysis is re-
duced to quasi-two-body. The partial-wave factor for the two spin-
less mesons is expressed by spherical harmonics. Thus, the full 
η(π−π+π0)π− partial-wave amplitudes read

ψϵ
LM(τ ) = fη(pπ− , pπ+ , pπ0) × Y M

L (ϑGJ,0)

×
{

sin MϕGJ for ϵ = +1

cos MϕGJ for ϵ = −1
(4)

and analogously for η′(π−π+η)π− . There are no M = 0, and 
therefore no L = 0 waves for ϵ = +1. The fits require a weak 
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Fig. 4. Intensities of the L = 1–6, M = 1 partial waves from the partial-wave analysis of the η′π− data in mass bins of 40 MeV/c2 width (circles). Shown for comparison 
(triangles) are the ηπ− results scaled by the relative kinematical factor given in Eq. (7).

For a detailed comparison of the results from the mass-
independent PWA of both channels, their different phase spaces 
and angular-momentum barriers are taken into account. For the 
decay of pointlike particles, transition rates are expected to be 
proportional to

g(m, L) = q(m) × q(m)2L (6)

with break-up momentum q(m) [30–32]. Overlaid on the PWA re-
sults for η′π− in Fig. 4 are those for ηπ− , multiplied in each bin 
by the relative kinematical factor

c(m, L) = b × g′(m, L)

g(m, L)
, (7)

where g(′) refers to η(′)π− with break-up momentum q(′) , and the 
factor b = 0.746 accounts for the decay branchings of η and η′ into 
π−π+γ γ [26].

By integrating the invariant mass spectra of each partial wave, 
scaled by [g(′)(m, L)]−1, from the η′π− threshold up to 3 GeV/c2, 
we obtain scaled yields I(′)L and derive the ratios

R L = b × I L/I ′L . (8)

As an alternative to the angular-momentum barrier factors q(m)2L

of Eq. (6), we have also used Blatt–Weisskopf barrier factors [33]. 
For the range parameter involved there, an upper limit of r =
0.4 fm was deduced from systematic studies of tensor meson de-
cays, including the present channels [30,31], whereas for r = 0 fm
Eq. (6) is recovered. To demonstrate the sensitivity of R L on the 
barrier model, the range of values corresponding to these upper 
and lower limits is given in Table 1.

The comparison in Fig. 4 reveals a conspicuous resemblance of 
the even-L partial waves of both channels. This feature remains if 
r = 0.4 fm, but the values of R L increase with increasing r (Ta-
ble 1). This similarity is corroborated by the relative phases as 
observed in Figs. 5 (d) and (f). The observed behaviour is expected 
from a quark-line picture where only the non-strange components 
nn̄ (n = u, d) of the incoming π− and the outgoing system are in-
volved. The similar values of R L for L = 2, 4, 6 suggest that the 
respective intermediate states couple to the same flavour content 
of the outgoing system.
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Fig. 1. Invariant mass spectra (not acceptance corrected) for (a) ηπ− and (b) η′π− . Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data (not acceptance corrected) as a function of the invariant ηπ− (a) and η′π− (b) masses and of the cosine of the decay angle in the respective Gottfried–Jackson 
frames where cosϑGJ = 1 corresponds η(′) emission in the beam direction. Two-dimensional acceptances can be found in Ref. [20].

indicates coherent contributions from larger angular momenta. 
Forward/backward asymmetries (only weakly affected by accep-
tance) occur for all masses in both channels, which indicates 
interference of odd and even partial waves. In the η′π− data, the 
a2(1320) is close to the threshold energy of this channel (1.1 GeV), 
and the signal is not dominant, see also Fig. 1 (b). A forward/back-
ward asymmetric interference pattern, indicating coherent D- and 
P -wave contributions with mass-dependent relative phase, gov-
erns the η′π− mass range up to 2 GeV/c2. In the a4(2040) region, 
well-localised interference is recognised. As for ηπ− , narrow for-
ward/backward peaking occurs at higher mass, but in this case the 
forward/backward asymmetry is visibly larger over the whole mass 
range of η′π− .

The data were subjected to a partial-wave analysis (PWA) using 
a program developed at Illinois and VES [21–23]. Independent fits 
were carried out in 40 MeV/c2 wide bins of the four-body mass 
from threshold up to 3 GeV/c2 (so-called mass-independent PWA). 
Momentum transfers were limited to the range given above.

An η(′)π− partial-wave is characterised by the angular mo-
mentum L, the absolute value of the magnetic quantum number 
M = |m| and the reflectivity ϵ = ±1, which is the eigenvalue of re-
flection about the production plane. Positive (negative) ϵ is chosen 
to correspond to natural (unnatural) spin-parity of the exchanged 
Reggeon with J P

tr = 1− or 2+ or 3− . . . (0− or 1+ or 2− . . . ) trans-
fer to the beam particle [18,24]. These two classes are incoherent.

In each mass bin, the differential cross section as a function of 
four-body kinematic variables τ is taken to be proportional to a 
model intensity I(τ ) which is expressed in terms of partial-wave 
amplitudes ψϵ

LM(τ ),

I(τ ) =
∑

ϵ

∣∣
∣∣
∑

L,M

A
ϵ
LMψ

ϵ
LM(τ )

∣∣
∣∣
2

+ non-η
(′) background. (1)

The magnitudes and phases of the complex numbers Aϵ
LM consti-

tute the free parameters of the fit. The expected number of events 
in a bin is

N̄ ∝
∫

I(τ )a(τ )dτ , (2)

where dτ is the four-body phase space element and a(τ ) desig-
nates the efficiency of detector and selection. Following the ex-
tended likelihood approach [25,24], fits are carried out maximis-
ing

ln L ∼ −N̄ +
n∑

k=1

ln I(τk), (3)

where the sum runs over all observed events in the mass bin. 
In this way, the acceptance-corrected model intensity is fit to the 
data.

The partial-wave amplitudes are composed of two parts: a fac-
tor fη ( fη′ ) that describes both the Dalitz plot distribution of the 
successive η (η′) decay [26] and the experimental peak shape, 
and a two-body partial-wave factor that depends on the primary 
η(′)π− decay angles. In this way, the four-body analysis is re-
duced to quasi-two-body. The partial-wave factor for the two spin-
less mesons is expressed by spherical harmonics. Thus, the full 
η(π−π+π0)π− partial-wave amplitudes read

ψ
ϵ
LM(τ ) = fη(pπ− , pπ+ , pπ0) × Y M

L (ϑGJ,0)

×
{ sin MϕGJ for ϵ = +1

cos MϕGJ for ϵ = −1
(4)

and analogously for η′(π−π+η)π− . There are no M = 0, and 
therefore no L = 0 waves for ϵ = +1. The fits require a weak 
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Fig. 1. Invariant mass spectra (not acceptance corrected) for (a) ηπ− and (b) η′π− . Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data (not acceptance corrected) as a function of the invariant ηπ− (a) and η′π− (b) masses and of the cosine of the decay angle in the respective Gottfried–Jackson 
frames where cosϑGJ = 1 corresponds η(′) emission in the beam direction. Two-dimensional acceptances can be found in Ref. [20].

indicates coherent contributions from larger angular momenta. 
Forward/backward asymmetries (only weakly affected by accep-
tance) occur for all masses in both channels, which indicates 
interference of odd and even partial waves. In the η′π− data, the 
a2(1320) is close to the threshold energy of this channel (1.1 GeV), 
and the signal is not dominant, see also Fig. 1 (b). A forward/back-
ward asymmetric interference pattern, indicating coherent D- and 
P -wave contributions with mass-dependent relative phase, gov-
erns the η′π− mass range up to 2 GeV/c2. In the a4(2040) region, 
well-localised interference is recognised. As for ηπ− , narrow for-
ward/backward peaking occurs at higher mass, but in this case the 
forward/backward asymmetry is visibly larger over the whole mass 
range of η′π− .

The data were subjected to a partial-wave analysis (PWA) using 
a program developed at Illinois and VES [21–23]. Independent fits 
were carried out in 40 MeV/c2 wide bins of the four-body mass 
from threshold up to 3 GeV/c2 (so-called mass-independent PWA). 
Momentum transfers were limited to the range given above.

An η(′)π− partial-wave is characterised by the angular mo-
mentum L, the absolute value of the magnetic quantum number 
M = |m| and the reflectivity ϵ = ±1, which is the eigenvalue of re-
flection about the production plane. Positive (negative) ϵ is chosen 
to correspond to natural (unnatural) spin-parity of the exchanged 
Reggeon with J P

tr = 1− or 2+ or 3− . . . (0− or 1+ or 2− . . . ) trans-
fer to the beam particle [18,24]. These two classes are incoherent.

In each mass bin, the differential cross section as a function of 
four-body kinematic variables τ is taken to be proportional to a 
model intensity I(τ ) which is expressed in terms of partial-wave 
amplitudes ψϵ

LM(τ ),

I(τ ) =
∑

ϵ

∣∣∣∣
∑

L,M

Aϵ
LMψϵ

LM(τ )

∣∣∣∣
2

+ non-η(′) background. (1)

The magnitudes and phases of the complex numbers Aϵ
LM consti-

tute the free parameters of the fit. The expected number of events 
in a bin is

N̄ ∝
∫

I(τ )a(τ )dτ , (2)

where dτ is the four-body phase space element and a(τ ) desig-
nates the efficiency of detector and selection. Following the ex-
tended likelihood approach [25,24], fits are carried out maximis-
ing

ln L ∼ −N̄ +
n∑

k=1

ln I(τk), (3)

where the sum runs over all observed events in the mass bin. 
In this way, the acceptance-corrected model intensity is fit to the 
data.

The partial-wave amplitudes are composed of two parts: a fac-
tor fη ( fη′ ) that describes both the Dalitz plot distribution of the 
successive η (η′) decay [26] and the experimental peak shape, 
and a two-body partial-wave factor that depends on the primary 
η(′)π− decay angles. In this way, the four-body analysis is re-
duced to quasi-two-body. The partial-wave factor for the two spin-
less mesons is expressed by spherical harmonics. Thus, the full 
η(π−π+π0)π− partial-wave amplitudes read

ψϵ
LM(τ ) = fη(pπ− , pπ+ , pπ0) × Y M

L (ϑGJ,0)

×
{

sin MϕGJ for ϵ = +1

cos MϕGJ for ϵ = −1
(4)

and analogously for η′(π−π+η)π− . There are no M = 0, and 
therefore no L = 0 waves for ϵ = +1. The fits require a weak 
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Fig. 4. Intensities of the L = 1–6, M = 1 partial waves from the partial-wave analysis of the η′π− data in mass bins of 40 MeV/c2 width (circles). Shown for comparison 
(triangles) are the ηπ− results scaled by the relative kinematical factor given in Eq. (7).

For a detailed comparison of the results from the mass-
independent PWA of both channels, their different phase spaces 
and angular-momentum barriers are taken into account. For the 
decay of pointlike particles, transition rates are expected to be 
proportional to

g(m, L) = q(m) × q(m)2L (6)

with break-up momentum q(m) [30–32]. Overlaid on the PWA re-
sults for η′π− in Fig. 4 are those for ηπ− , multiplied in each bin 
by the relative kinematical factor

c(m, L) = b × g′(m, L)

g(m, L)
, (7)

where g(′) refers to η(′)π− with break-up momentum q(′) , and the 
factor b = 0.746 accounts for the decay branchings of η and η′ into 
π−π+γ γ [26].

By integrating the invariant mass spectra of each partial wave, 
scaled by [g(′)(m, L)]−1, from the η′π− threshold up to 3 GeV/c2, 
we obtain scaled yields I(′)L and derive the ratios

R L = b × I L/I ′L . (8)

As an alternative to the angular-momentum barrier factors q(m)2L

of Eq. (6), we have also used Blatt–Weisskopf barrier factors [33]. 
For the range parameter involved there, an upper limit of r =
0.4 fm was deduced from systematic studies of tensor meson de-
cays, including the present channels [30,31], whereas for r = 0 fm
Eq. (6) is recovered. To demonstrate the sensitivity of R L on the 
barrier model, the range of values corresponding to these upper 
and lower limits is given in Table 1.

The comparison in Fig. 4 reveals a conspicuous resemblance of 
the even-L partial waves of both channels. This feature remains if 
r = 0.4 fm, but the values of R L increase with increasing r (Ta-
ble 1). This similarity is corroborated by the relative phases as 
observed in Figs. 5 (d) and (f). The observed behaviour is expected 
from a quark-line picture where only the non-strange components 
nn̄ (n = u, d) of the incoming π− and the outgoing system are in-
volved. The similar values of R L for L = 2, 4, 6 suggest that the 
respective intermediate states couple to the same flavour content 
of the outgoing system.

P-wave
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Fig. 1. Invariant mass spectra (not acceptance corrected) for (a) ηπ− and (b) η′π− . Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data (not acceptance corrected) as a function of the invariant ηπ− (a) and η′π− (b) masses and of the cosine of the decay angle in the respective Gottfried–Jackson 
frames where cosϑGJ = 1 corresponds η(′) emission in the beam direction. Two-dimensional acceptances can be found in Ref. [20].

indicates coherent contributions from larger angular momenta. 
Forward/backward asymmetries (only weakly affected by accep-
tance) occur for all masses in both channels, which indicates 
interference of odd and even partial waves. In the η′π− data, the 
a2(1320) is close to the threshold energy of this channel (1.1 GeV), 
and the signal is not dominant, see also Fig. 1 (b). A forward/back-
ward asymmetric interference pattern, indicating coherent D- and 
P -wave contributions with mass-dependent relative phase, gov-
erns the η′π− mass range up to 2 GeV/c2. In the a4(2040) region, 
well-localised interference is recognised. As for ηπ− , narrow for-
ward/backward peaking occurs at higher mass, but in this case the 
forward/backward asymmetry is visibly larger over the whole mass 
range of η′π− .

The data were subjected to a partial-wave analysis (PWA) using 
a program developed at Illinois and VES [21–23]. Independent fits 
were carried out in 40 MeV/c2 wide bins of the four-body mass 
from threshold up to 3 GeV/c2 (so-called mass-independent PWA). 
Momentum transfers were limited to the range given above.

An η(′)π− partial-wave is characterised by the angular mo-
mentum L, the absolute value of the magnetic quantum number 
M = |m| and the reflectivity ϵ = ±1, which is the eigenvalue of re-
flection about the production plane. Positive (negative) ϵ is chosen 
to correspond to natural (unnatural) spin-parity of the exchanged 
Reggeon with J P

tr = 1− or 2+ or 3− . . . (0− or 1+ or 2− . . . ) trans-
fer to the beam particle [18,24]. These two classes are incoherent.

In each mass bin, the differential cross section as a function of 
four-body kinematic variables τ is taken to be proportional to a 
model intensity I(τ ) which is expressed in terms of partial-wave 
amplitudes ψϵ

LM(τ ),

I(τ ) =
∑

ϵ

∣∣
∣∣
∑

L,M

A
ϵ
LMψ

ϵ
LM(τ )

∣∣
∣∣
2

+ non-η
(′) background. (1)

The magnitudes and phases of the complex numbers Aϵ
LM consti-

tute the free parameters of the fit. The expected number of events 
in a bin is

N̄ ∝
∫

I(τ )a(τ )dτ , (2)

where dτ is the four-body phase space element and a(τ ) desig-
nates the efficiency of detector and selection. Following the ex-
tended likelihood approach [25,24], fits are carried out maximis-
ing

ln L ∼ −N̄ +
n∑

k=1

ln I(τk), (3)

where the sum runs over all observed events in the mass bin. 
In this way, the acceptance-corrected model intensity is fit to the 
data.

The partial-wave amplitudes are composed of two parts: a fac-
tor fη ( fη′ ) that describes both the Dalitz plot distribution of the 
successive η (η′) decay [26] and the experimental peak shape, 
and a two-body partial-wave factor that depends on the primary 
η(′)π− decay angles. In this way, the four-body analysis is re-
duced to quasi-two-body. The partial-wave factor for the two spin-
less mesons is expressed by spherical harmonics. Thus, the full 
η(π−π+π0)π− partial-wave amplitudes read

ψ
ϵ
LM(τ ) = fη(pπ− , pπ+ , pπ0) × Y M

L (ϑGJ,0)

×
{ sin MϕGJ for ϵ = +1

cos MϕGJ for ϵ = −1
(4)

and analogously for η′(π−π+η)π− . There are no M = 0, and 
therefore no L = 0 waves for ϵ = +1. The fits require a weak 
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Fig. 1. Invariant mass spectra (not acceptance corrected) for (a) ηπ− and (b) η′π− . Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data (not acceptance corrected) as a function of the invariant ηπ− (a) and η′π− (b) masses and of the cosine of the decay angle in the respective Gottfried–Jackson 
frames where cosϑGJ = 1 corresponds η(′) emission in the beam direction. Two-dimensional acceptances can be found in Ref. [20].

indicates coherent contributions from larger angular momenta. 
Forward/backward asymmetries (only weakly affected by accep-
tance) occur for all masses in both channels, which indicates 
interference of odd and even partial waves. In the η′π− data, the 
a2(1320) is close to the threshold energy of this channel (1.1 GeV), 
and the signal is not dominant, see also Fig. 1 (b). A forward/back-
ward asymmetric interference pattern, indicating coherent D- and 
P -wave contributions with mass-dependent relative phase, gov-
erns the η′π− mass range up to 2 GeV/c2. In the a4(2040) region, 
well-localised interference is recognised. As for ηπ− , narrow for-
ward/backward peaking occurs at higher mass, but in this case the 
forward/backward asymmetry is visibly larger over the whole mass 
range of η′π− .

The data were subjected to a partial-wave analysis (PWA) using 
a program developed at Illinois and VES [21–23]. Independent fits 
were carried out in 40 MeV/c2 wide bins of the four-body mass 
from threshold up to 3 GeV/c2 (so-called mass-independent PWA). 
Momentum transfers were limited to the range given above.

An η(′)π− partial-wave is characterised by the angular mo-
mentum L, the absolute value of the magnetic quantum number 
M = |m| and the reflectivity ϵ = ±1, which is the eigenvalue of re-
flection about the production plane. Positive (negative) ϵ is chosen 
to correspond to natural (unnatural) spin-parity of the exchanged 
Reggeon with J P

tr = 1− or 2+ or 3− . . . (0− or 1+ or 2− . . . ) trans-
fer to the beam particle [18,24]. These two classes are incoherent.

In each mass bin, the differential cross section as a function of 
four-body kinematic variables τ is taken to be proportional to a 
model intensity I(τ ) which is expressed in terms of partial-wave 
amplitudes ψϵ

LM(τ ),

I(τ ) =
∑

ϵ

∣∣∣∣
∑

L,M

Aϵ
LMψϵ

LM(τ )

∣∣∣∣
2

+ non-η(′) background. (1)

The magnitudes and phases of the complex numbers Aϵ
LM consti-

tute the free parameters of the fit. The expected number of events 
in a bin is

N̄ ∝
∫

I(τ )a(τ )dτ , (2)

where dτ is the four-body phase space element and a(τ ) desig-
nates the efficiency of detector and selection. Following the ex-
tended likelihood approach [25,24], fits are carried out maximis-
ing

ln L ∼ −N̄ +
n∑

k=1

ln I(τk), (3)

where the sum runs over all observed events in the mass bin. 
In this way, the acceptance-corrected model intensity is fit to the 
data.

The partial-wave amplitudes are composed of two parts: a fac-
tor fη ( fη′ ) that describes both the Dalitz plot distribution of the 
successive η (η′) decay [26] and the experimental peak shape, 
and a two-body partial-wave factor that depends on the primary 
η(′)π− decay angles. In this way, the four-body analysis is re-
duced to quasi-two-body. The partial-wave factor for the two spin-
less mesons is expressed by spherical harmonics. Thus, the full 
η(π−π+π0)π− partial-wave amplitudes read

ψϵ
LM(τ ) = fη(pπ− , pπ+ , pπ0) × Y M

L (ϑGJ,0)

×
{

sin MϕGJ for ϵ = +1

cos MϕGJ for ϵ = −1
(4)

and analogously for η′(π−π+η)π− . There are no M = 0, and 
therefore no L = 0 waves for ϵ = +1. The fits require a weak 
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S U M M A R Y  &  O U T L O O K

photoproduction   

@ GlueX
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S U M M A R Y  &  O U T L O O K

‣ construct fitting functions for the single- and double-diffractive regime using 

Regge formalism; parametrize the low-energy amplitude within N/D formalism 

‣ extract the parameters of the reggeon-particle amplitude 

‣  analyze correlation between low- and high-energy regions using FESR

photoproduction   

@ GlueX
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S U M M A R Y  &  O U T L O O K

‣ construct fitting functions for the single- and double-diffractive regime using 

Regge formalism; parametrize the low-energy amplitude within N/D formalism 

‣ extract the parameters of the reggeon-particle amplitude 

‣  analyze correlation between low- and high-energy regions using FESR

photoproduction   

@ GlueX

JPC=…

‣  non-trivial correlation between production of exotic states and violation of 

exchange degeneracy 

‣ sensitivity to the gluon component of η’

expectations
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