Amplitude analysis of resonant production in three pions

A. Jackura with M. Mikhasenko & A. Szczepaniak

Indiana University, Joint Physics Analysis Center

June 2nd, 2016 14th International Workshop on Meson Production, Properties and Interaction Kraków, Poland

Jackura, Mikhasenko (IU, JPAC)

Amplitude analysis of 3π

June 2nd, 2016 1 / 19

Joint Physics Analysis Center (JPAC)

- The Joint Physics Analysis Center (JPAC) formed in October 2013
- We support physics analysis of experimental data for accelerator facilities (JLab12, COMPASS, ...)
- http://www.indiana.edu/~jpac/
- JPAC Talks
 - Vladiszlav Pauk (Today 17:55 in Parallel B)
 - Adam Szczepaniak (Friday 9:00 Plenary)
 - Emilie Passemar (Friday 15:25 in Parallel A)
 - Alessandro Pilloni (Monday 17:15 in Parallel B)
 - Vincent Mathieu (Poster Session)

E Sac

イロト イポト イヨト イヨト

3π at COMPASS

- Study peripheral resonance production of 3π systems at COMPASS.
 - High statistics, high purity data allows for detailed analysis
 - JPAC affiliated with COMPASS to perform analysis on data
- Construct analytic amplitudes to extract resonance information
 - Amplitude satisfy S-matrix principles
 - Emphasize production process and unitarization of amplitude

3π Production Mechanisms

- Peripheral production is advantageous Effective 2 \rightarrow 2, 2 \rightarrow 3, etc. meson scattering
 - By effective we mean particle-reggeon scattering
- Production mechanisms dictate physics
 - Expect exchange mechanism dominated by pomeron at high-energies
 - Effective 2 \rightarrow 2, 2 \rightarrow 3, etc. meson scattering production by particle exchange

PWA of 3π final state

- Develop method of analysis satisfying S-matrix principles, study J^{PC} resonances in 3π
- In this presentation, we focus on 2^{-+} ,
 - long standing puzzle about $\pi_2(1670) - \pi_2(1880)$ interplay,
 - 17 waves out of 88 have $J^{PC} = 2^{-+}$,

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

June 2nd, 2016 5 / 19

The Model

- Partial wave analysis of 3π system in $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$
- Use isobar model, with first approximation of stable isobars in $(\pi^-\pi^+)$
- Pomeron phenomenologically approximated by vector particle, $lpha_{\mathbb{P}}pprox 1$
 - Factorize $N \to \mathbb{P}N$ vertex from rest of amplitude
- For $J^{PC} = 2^{-+}$, focus on high event intensities
 - e.g. *ρπ* F-wave, *f*₂(1270)*π* S- and D-waves, ...
- Coupled channel analysis for partial wave amplitudes F_i(s), with channel index i = {ρπ(F), f₂π(S), f₂π(D),...}

Unitarity and Analyticity

• Partial wave unitarity of $\pi^-\mathbb{P} o (\pi^-\pi^+)\pi^-$ amplitude

Disc
$$F_i(s) = 2i \sum_j t_{ij}^*(s) \rho_j(s) F_j(s)$$

Rescattering amplitude satisfies its own unitarity equation

$$\operatorname{Im} t_{ij}(s) = \sum_{k} t_{ik}^*(s) \rho_k(s) t_{kj}(s)$$

• One can separate *F_i* into LHC and RHC terms, and write dispersive integral equation for *F_i*, with solution given by Omnes

$$F_i(s) = b_i(s) + \sum_j t_{ij}(s)c_j + rac{1}{\pi}\sum_j t_{ij}(s)\int_{s_j}^\infty ds' rac{
ho_j(s')b_j(s')}{s'-s}$$

Jackura, Mikhasenko (IU, JPAC)

K-Matrix Parameterization

• To preserve unitarity, rescattering amplitude $t_{ij}(s)$ is parameterized by *K*-matrix

$$[t^{-1}]_{ij}(s) = [K^{-1}]_{ij}(s) - I_i(s)\delta_{ij}$$

where $I_i(s)$ is Chew-Mandelstam phase space factor, with $\text{Im } I_i(s) = \rho_i(s)$

• The real *K*-matrix is parameterized by resonant and non-resonant contributions

$$K_{ij}(s) = \sum_{r} \frac{g_i^r g_j^r}{m_r^2 - s} + \sum_{n} \gamma_{ij}^n s^n$$

• Fit K-matrix parameters to data and extract resonance information

Production Amplitude

- For the production amplitude $b_i(s)$, we model with Deck amplitude
- Consider π exchange
 - Closest LHC to physics region \implies Expected to be significant contribution
 - Ignoring subtleties of π-exchange (May need absorption corrections)

Model:

$$A_{\mathsf{Deck}}(s,\Omega) = \frac{g_{\rho\pi\pi}g_{\mathbb{P}\pi\pi}}{t(s,\theta) - m_{\pi}^2} \epsilon_{\lambda} \cdot p_2 \, \epsilon_{\lambda'}^{\sigma*} \cdot \{p_{\mathsf{a}}\}$$

• $b_i(s)$ is partial wave projection of A_{Deck} in definite J, M, and L states

Fit Attempts

• As first attempt, we consider a more simplified model, where the production amplitude is conformal expansion

$$F_i(s) = \sum_j t_{ij}(s) lpha_j(s)$$

- α_i contains no RHCs and has free parameters
- Also, consider only $f_2\pi$ in S- and D-wave

$$F_i = \sum_{j} \prod_{p \in \mathcal{F}_2} \frac{\alpha_j + t_{ij}}{\pi}$$

A (B) < A (B) < A (B) </p>

Simple Production Model Fit

Jackura, Mikhasenko (IU, JPAC)

June 2nd, 2016 11 / 19

3

A.

Unitarized Deck Fits

- The fits for a general production term α_i seem too flexible in the current approach
- Now use unitarized Deck amplitude developed for this analysis

• Fit Intensities and phase differences of three channel case

Jackura, Mikhasenko (IU, JPAC)

- 4 週 1 - 4 三 1 - 4 三 1

Unitarized Deck Fits

Data: three main waves at low |t'| (0.1 GeV²-0.113GeV²):

 $2^{-+}0^+ f_2 \pi S$, $2^{-+}0^+ f_2 \pi D$, $2^{-+}0^+ (\pi \pi)_s \pi D$.

Figure: Fit model: 3 channel K-matrix with two poles and unitarized "Deck".

- K-matrix assumes elasticity, so simultaneous fit of all decay channels are needed (all 3π waves),
- data for 11 |t'| intervals are available. |t'|-dependence of non-resonance component is fixed by "Deck" model.

イロト イポト イヨト イヨト

Future Developments for COMPASS Analysis

- Develop Framework to analyze 3π resonances satisfying S-matrix principles
- Will investigate Finite Energy Sum Rules to constrain amplitudes
- We are fitting data based on COMPASS model. Will extend to 4-vectors and for GlueX at JLab
 - Want to describe entire 3π spectrum, but some interesting cases along the way (2⁻⁺ and 1⁺⁺)
 - Will continue the work on COMPASS in 2^{-+} sector
 - Perform analysis on 1⁺⁺ sector, a₁(1420) puzzle

June 2nd, 2016 14 / 19

Summary

- We have developed the analysis formalism to analyze 3π systems for peripheral reactions
- Formalism satisfies S-matrix principles
- Applying formalism to COMPASS and extracting resonances
 - Focus on $J^{PC} = 2^{-+}$ first, then apply to all $3\pi J^{PC}$
- Extend formalism for photon beams (JLab12 physics)

Backup

Backup

Phase Space Factors

- In stable isobar limit, phase space factor is 2-body: $ho_i \sim \sqrt{(s-s_i)/s}$
- Decaying isobar introduces $\pi^+\pi^-$ scattering amplitude f(s)
- Phase space factors change to quasi-two body phase space factors

$$ho_{ ext{Quasi}}(s) \sim \int_{4m_\pi^2}^{\sqrt{s}-m_\pi} ds' \,
ho_{ ext{Isobar}-\pi}(s') ext{Im} \, f(s')$$

 Affects how we continue to unphysical sheets, new (Woolly) cut introduced

Resonance Extraction

- Analytically continue amplitudes to unphysical sheets to search for poles
- Stable isobars involve only two-body phase space factors (simple square-roots)
- For decaying isobars, Woolly cut may hide pole onto a deeper sheet

Backup

Summary of the project

$$\begin{cases} \text{Disc } t = 2i t^* \rho t \\ \text{Disc } F = 2i t^* \rho F \end{cases}$$

Jackura, Mikhasenko (IU, JPAC)

Unitarity condition:

- two body unitarity and quasi-two-body, isobar+pion
- ✓ consideration of various solutions, ×N/D (deadlock), ✓ K-matrix
- generalisation for multi-channel case,
- incorporation of threshold behaviour.

Analytical continuation of amplitude:

- additional isobar strucure "Woolly" cut [Aitchison]
- 🗸 pole search

Production mechanism

- P-vector solution(deadlock),
- short-long range approximation, explicit incorporation of "Deck" amplitude [Basdevant-Berger]
- PW projection of scalar "Deck", threshold behaviour check
- PW projection of spin-"Deck", threshold behaviour check [Ascoli, Griss-Fox]

It and systematics

- Implementation of the fit procedure, C++, Mathematica, Fortran
- \square MC studies of χ^2 -function

Amplitude analysis of 3π

June 2nd, 2016 19 / 19