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Introduction

3π at COMPASS

Study peripheral resonance production of 3π systems at COMPASS.

High statistics, high purity data allows for detailed analysis
JPAC affiliated with COMPASS to perform analysis on data

Construct analytic amplitudes to extract resonance information

Amplitude satisfy S-matrix principles
Emphasize production process and unitarization of amplitude

[ C. Adolph et al. [COMPASS Collaboration], arXiv:1509.00992]
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Introduction

3π Production Mechanisms

Peripheral production is advantageous - Effective 2→ 2, 2→ 3, etc.
meson scattering

By effective we mean particle-reggeon scattering

Production mechanisms dictate physics

Expect exchange mechanism dominated by pomeron at high-energies
Effective 2→ 2, 2→ 3, etc. meson scattering production by particle
exchange
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Introduction

PWA of 3π final state

Develop method of analysis
satisfying S-matrix principles,
study JPC resonances in 3π

In this presentation, we focus
on 2−+,

long standing puzzle
about π2(1670)–π2(1880)
interplay,
17 waves out of 88 have
JPC = 2−+,

S

L

JPC

[C. Adolph et al. [COMPASS Collaboration], arXiv:1509.00992]
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Formalism

The Model

Partial wave analysis of 3π system in π−p → π−π−π+p

Use isobar model, with first approximation of stable isobars in (π−π+)

Pomeron phenomenologically approximated by vector particle, αP ≈ 1

Factorize N → PN vertex from rest of amplitude

For JPC = 2−+, focus on high
event intensities

e.g. ρπ F -wave, f2(1270)π
S- and D-waves, . . .

Coupled channel analysis for
partial wave amplitudes Fi (s),
with channel index
i = {ρπ(F ), f2π(S), f2π(D), . . .}
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Formalism

Unitarity and Analyticity

Partial wave unitarity of π−P→ (π−π+)π− amplitude

DiscFi (s) = 2i
∑
j

t∗ij(s)ρj(s)Fj(s)

Rescattering amplitude satisfies its own unitarity equation

Im tij(s) =
∑
k

t∗ik(s)ρk(s)tkj(s)

One can separate Fi into LHC and RHC terms, and write dispersive
integral equation for Fi , with solution given by Omnes

Fi (s) = bi (s) +
∑
j

tij (s)cj +
1

π

∑
j

tij (s)

∫ ∞

sj

ds′
ρj (s

′)bj (s
′)

s′ − s
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Formalism

K-Matrix Parameterization

To preserve unitarity, rescattering amplitude tij(s) is parameterized by
K -matrix

[t−1]ij(s) = [K−1]ij(s)− Ii (s)δij

where Ii (s) is Chew-Mandelstam phase space factor, with
Im Ii (s) = ρi (s)

The real K -matrix is parameterized by resonant and non-resonant
contributions

Kij(s) =
∑
r

g r
i g

r
j

m2
r − s

+
∑
n

γnij s
n

Fit K -matrix parameters to data and extract resonance information
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Formalism

Production Amplitude

For the production amplitude bi (s), we
model with Deck amplitude

Consider π exchange

Closest LHC to physics region =⇒
Expected to be significant contribution
Ignoring subtleties of π-exchange
(May need absorption corrections)

P π−

π− ρ0

s

t

π−

Model:
ADeck(s,Ω) =

gρππgPππ
t(s, θ)−m2

π

ελ · p2 ε
σ∗
λ′ · {pa}

bi (s) is partial wave projection of ADeck in definite J, M, and L states
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Current Results

Fit Attempts

As first attempt, we consider a more simplified model, where the
production amplitude is conformal expansion

Fi (s) =
∑
j

tij(s)αj(s)

αi contains no RHCs and has free parameters

Also, consider only f2π in S- and D-wave

Fi =
∑
j

π

P

ρ/f2

π

αj tij
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Current Results

Simple Production Model Fit
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Current Results

Unitarized Deck Fits

The fits for a general production term αi seem too flexible in the
current approach

Now use unitarized Deck amplitude developed for this analysis

Fi (s) = bi (s) +
∑
j

tij(s)cj +
1

π

∑
j

tij(s)

∫ ∞
sj

ds ′
ρj(s

′)bj(s
′)

s ′ − s

Fi (s) =

π I

P π︸ ︷︷ ︸
Deck projection b0

+

P

π I

π

t(s)

︸ ︷︷ ︸
Short range production t c

+

π

P

I

π

t(s)

︸ ︷︷ ︸
Unitarised Deck t/π

∫
...ds′

Fit Intensities and phase differences of three channel case
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Current Results

Unitarized Deck Fits

Data: three main waves at low |t ′| (0.1 GeV2-0.113GeV2):

2−+0+ f2π S , 2−+0+ f2πD, 2−+0+ (ππ)sπD.
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Figure: Fit model: 3 channel K-matrix with two poles and unitarized ”Deck”.

K-matrix assumes elasticity, so simultaneous fit of all decay channels
are needed (all 3π waves),

data for 11 |t ′| intervals are available. |t ′|-dependence of
non-resonance component is fixed by “Deck” model.
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Outlook

Future Developments for COMPASS Analysis

Develop Framework to analyze 3π resonances satisfying S-matrix
principles

Will investigate Finite Energy Sum Rules to constrain amplitudes

We are fitting data based on COMPASS model. Will extend to
4-vectors and for GlueX at JLab

Want to describe entire 3π
spectrum, but some
interesting cases along the
way (2−+ and 1++)

Will continue the work on
COMPASS in 2−+ sector
Perform analysis on 1++

sector, a1(1420) puzzle

[C. Adolph et al. [COMPASS Collaboration],
Phys. Rev. Lett. 115, 082001 (2015)]
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Outlook

Summary

We have developed the analysis formalism to analyze 3π systems for
peripheral reactions

Formalism satisfies S-matrix principles

Applying formalism to COMPASS and extracting resonances

Focus on JPC = 2−+ first, then apply to all 3π JPC

Extend formalism for photon beams (JLab12 physics)
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Backup

Backup
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Backup

Phase Space Factors

In stable isobar limit, phase space factor is 2-body: ρi ∼
√

(s − si )/s

Decaying isobar introduces π+π− scattering amplitude f (s)

Phase space factors change to quasi-two body phase space factors

ρQuasi(s) ∼
∫ √s−mπ

4m2
π

ds ′ ρIsobar−π(s ′)Im f (s ′)

Affects how we continue to unphysical sheets, new (Woolly) cut
introduced
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Backup

Resonance Extraction

Analytically continue amplitudes to unphysical sheets to search for
poles

Stable isobars involve only two-body phase space factors (simple
square-roots)

For decaying isobars, Woolly cut may hide pole onto a deeper sheet
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Backup

Summary of the project

{
Disc t = 2i t∗ ρ t

DiscF = 2i t∗ ρF

π
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1 Unitarity condition:
! two body unitarity and quasi-two-body,

isobar+pion

! consideration of various solutions,
%N/D (deadlock), !K -matrix

! generalisation for multi-channel case,

! incorporation of threshold behaviour.

2 Analytical continuation of amplitude:
! additional isobar strucure

“Woolly” cut [Aitchison]

! pole search

3 Production mechanism
! P-vector solution(deadlock),

! short-long range approximation,
explicit incorporation of “Deck” amplitude [Basdevant-Berger]

! PW projection of scalar “Deck”,
threshold behaviour check

� PW projection of spin-“Deck”,
threshold behaviour check [Ascoli, Griss-Fox]

4 Fit and systematics
� Implementation of the fit procedure,

C++, Mathematica, Fortran

� MC studies of χ2-function
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