Amplitude analysis of resonant production in three pions

A. Jackura
with M. Mikhasenko & A. Szczepaniak

Indiana University, Joint Physics Analysis Center

June 2nd, 2016
14th International Workshop on Meson Production, Properties and Interaction
Kraków, Poland
The Joint Physics Analysis Center (JPAC) formed in October 2013

We support physics analysis of experimental data for accelerator facilities (JLab12, COMPASS, ...)

http://www.indiana.edu/~jpac/

JPAC Talks

- Vladislav Pauk (Today 17:55 in Parallel B)
- Adam Szczepaniak (Friday 9:00 Plenary)
- Emilie Passemar (Friday 15:25 in Parallel A)
- Alessandro Pilloni (Monday 17:15 in Parallel B)
- Vincent Mathieu (Poster Session)
3π at COMPASS

- Study peripheral resonance production of 3π systems at COMPASS.
 - High statistics, high purity data allows for detailed analysis
 - JPAC affiliated with COMPASS to perform analysis on data
- Construct analytic amplitudes to extract resonance information
 - Amplitude satisfy S-matrix principles
 - Emphasize production process and unitarization of amplitude

[C. Adolph et al. [COMPASS Collaboration], arXiv:1509.00992]
Peripheral production is advantageous - Effective $2 \rightarrow 2$, $2 \rightarrow 3$, etc. meson scattering

By effective we mean particle-reggeon scattering

Production mechanisms dictate physics

Expect exchange mechanism dominated by pomeron at high-energies

Effective $2 \rightarrow 2$, $2 \rightarrow 3$, etc. meson scattering production by particle exchange
PWA of 3π final state

- Develop method of analysis satisfying S-matrix principles, study J^{PC} resonances in 3π
- In this presentation, we focus on 2^{-+},
 - long standing puzzle about $\pi_2(1670) - \pi_2(1880)$ interplay,
 - 17 waves out of 88 have $J^{PC} = 2^{-+}$,

[C. Adolph et al. [COMPASS Collaboration], arXiv:1509.00992]
The Model

- Partial wave analysis of 3π system in $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$
- Use isobar model, with first approximation of stable isobars in $(\pi^- \pi^+)$
- Pomeron phenomenologically approximated by vector particle, $\alpha_P \approx 1$
 - Factorize $N \rightarrow P N$ vertex from rest of amplitude

- For $J^{PC} = 2^{-+}$, focus on high event intensities
 - e.g. $\rho \pi$ F-wave, $f_2(1270)\pi$
 - S- and D-waves, ...

- Coupled channel analysis for partial wave amplitudes $F_i(s)$, with channel index $i = \{\rho \pi (F), f_2 \pi (S), f_2 \pi (D), \ldots\}$
Unitarity and Analyticity

- Partial wave unitarity of $\pi^- P \rightarrow (\pi^- \pi^+) \pi^-$ amplitude

$$\text{Disc } F_i(s) = 2i \sum_j t_{ij}^*(s) \rho_j(s) F_j(s)$$

- Rescattering amplitude satisfies its own unitarity equation

$$\text{Im } t_{ij}(s) = \sum_k t_{ik}^*(s) \rho_k(s) t_{kj}(s)$$

- One can separate F_i into LHC and RHC terms, and write dispersive integral equation for F_i, with solution given by Omnes

$$F_i(s) = b_i(s) + \sum_j t_{ij}(s) c_j + \frac{1}{\pi} \sum_j t_{ij}(s) \int_{s_j}^{\infty} ds' \frac{\rho_j(s') b_j(s')}{s' - s}$$
K-Matrix Parameterization

- To preserve unitarity, rescattering amplitude $t_{ij}(s)$ is parameterized by K-matrix
 \[
 [t^{-1}]_{ij}(s) = [K^{-1}]_{ij}(s) - l_i(s)\delta_{ij}
 \]
 where $l_i(s)$ is Chew-Mandelstam phase space factor, with $\text{Im} l_i(s) = \rho_i(s)$

- The real K-matrix is parameterized by resonant and non-resonant contributions
 \[
 K_{ij}(s) = \sum_r g_i^r g_j^r \frac{1}{m_r^2 - s} + \sum_n \gamma_{ij}^n s^n
 \]

- Fit K-matrix parameters to data and extract resonance information
For the production amplitude $b_i(s)$, we model with Deck amplitude.

Consider π exchange:
- Closest LHC to physics region \Rightarrow Expected to be significant contribution.
- Ignoring subtleties of π-exchange (May need absorption corrections).

Model:

$$A_{\text{Deck}}(s, \Omega) = \frac{g_{\rho\pi\pi} g_{\rho\pi\pi}}{t(s, \theta) - m^2_{\pi}} \epsilon \lambda \cdot p_2 \epsilon_{\lambda'} \cdot \{p_a\}$$

$b_i(s)$ is partial wave projection of A_{Deck} in definite J, M, and L states.
As first attempt, we consider a more simplified model, where the production amplitude is conformal expansion

$$F_i(s) = \sum_j t_{ij}(s) \alpha_j(s)$$

- α_i contains no RHCs and has free parameters
- Also, consider only $f_2\pi$ in S- and D-wave
Current Results

Simple Production Model Fit

\[\chi^2 / dof = 12.2 \]

\[m_{R_1} = 1.820 \text{ GeV} \]
\[\Gamma_{R_1} = 0.214 \text{ GeV} \]

\[m_{R_2} = 1.612 \text{ GeV} \]
\[\Gamma_{R_2} = 0.194 \text{ GeV} \]
The fits for a general production term α_i seem too flexible in the current approach.

Now use unitarized Deck amplitude developed for this analysis

$$F_i(s) = b_i(s) + \sum_j t_{ij}(s) c_j + \frac{1}{\pi} \sum_j t_{ij}(s) \int_{s_j}^{\infty} ds' \rho_j(s') b_j(s') \frac{s' - s}{s'}$$

- **Deck projection b_0**
- **Short range production $t\ c$**
- **Unitarised Deck $t/\pi \int ...ds'$**

Fit Intensities and phase differences of three channel case
Unitarized Deck Fits

Data: three main waves at low $|t'|$ (0.1 GeV2-0.113 GeV2):

$$2^{-+0^+} f_2 \pi S, \quad 2^{-+0^+} f_2 \pi D, \quad 2^{-+0^+} (\pi \pi)_S \pi D.$$

Figure: Fit model: 3 channel K-matrix with two poles and unitarized "Deck".

- K-matrix assumes elasticity, so simultaneous fit of all decay channels are needed (all 3π waves),
- data for 11 $|t'|$ intervals are available. $|t'|$-dependence of non-resonance component is fixed by “Deck” model.
Future Developments for COMPASS Analysis

- Develop Framework to analyze 3π resonances satisfying S-matrix principles
- Will investigate Finite Energy Sum Rules to constrain amplitudes
- We are fitting data based on COMPASS model. Will extend to 4-vectors and for GlueX at JLab

- Want to describe entire 3π spectrum, but some interesting cases along the way (2^{-+} and 1^{++})
 - Will continue the work on COMPASS in 2^{-+} sector
 - Perform analysis on 1^{++} sector, $a_1(1420)$ puzzle

We have developed the analysis formalism to analyze 3π systems for peripheral reactions.

Formalism satisfies S-matrix principles.

Applying formalism to COMPASS and extracting resonances:
- Focus on $J^{PC} = 2^{-+}$ first, then apply to all $3\pi\ J^{PC}$.

Extend formalism for photon beams (JLab12 physics).
Phase Space Factors

- In stable isobar limit, phase space factor is 2-body: \(\rho_i \sim \sqrt{(s - s_i)/s} \)
- Decaying isobar introduces \(\pi^+\pi^- \) scattering amplitude \(f(s) \)
- Phase space factors change to quasi-two body phase space factors
 \[\rho_{\text{Quasi}}(s) \sim \int_{4m_{\pi}^2}^{\sqrt{s-m_{\pi}}} ds' \rho_{\text{Isobar}-\pi}(s') \text{Im} f(s') \]
- Affects how we continue to unphysical sheets, new (Woolly) cut introduced
Resonance Extraction

- Analytically continue amplitudes to unphysical sheets to search for poles
- Stable isobars involve only two-body phase space factors (simple square-roots)
- For decaying isobars, Woolly cut may hide pole onto a deeper sheet
Summary of the project

1. Unitarity condition:
 - two body unitarity and quasi-two-body, isobar+pion
 - consideration of various solutions, \(\bar{N}/D \) (deadlock), \(K \)-matrix
 - generalisation for multi-channel case,
 - incorporation of threshold behaviour.

2. Analytical continuation of amplitude:
 - additional isobar structure
 - “Woolly” cut [Aitchison]
 - pole search

3. Production mechanism
 - \(P \)-vector solution (deadlock),
 - short-long range approximation,
 - explicit incorporation of “Deck” amplitude [Basdevant-Berger]
 - PW projection of scalar “Deck”, threshold behaviour check
 - PW projection of spin-“Deck”, threshold behaviour check [Ascoli, Griss-Fox]

4. Fit and systematics
 - Implementation of the fit procedure, C++, Mathematica, Fortran
 - MC studies of \(\chi^2 \)-function