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1.   Introduction and Motivation 



1.1  Hadronic Physics 

•  New era of precision experiments 
 Build amplitudes to look for exotics, hybrid mesons 

 
•  Require building blocks: 

–  ππ 
–  Kπ 

 
•  Precise tests of the Standard Model 

•  Look for physics beyond the Standard Model: High precision at low 
energy as a key to new physics? 

 

Emilie Passemar 4 

ChPT + dispersion relations  



1.2   Chiral Symmetry 

•  Limit 
 
 
 
 
 
 
 
Symmetry: 

 

•  Chiral Perturbation Theory: dynamics of the Goldstone bosons (kaons, 
pions, eta) 

•  Goldstone bosons interact weakly at low energy and 
Expansion organized in external momenta and quark masses    
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1.3   Chiral expansion 

•    

 
 
 
 

•  The structure of the lagrangian is fixed by chiral symmetry but not the 
coupling constants à LECs appearing at each order 

•  The method has been rigorously established and can be formulated as a 
set of calculational rules:  
 

LO :     tree level diagrams with 
 
 

NLO:   tree level diagrams with  
           1-loop diagrams with 
 
 

NNLO: tree level diagrams with  
                 2-loop diagrams with  
                 1-loop diagrams with one vertex from 
 

•  Renormalizable and unitary order by order in the expansion 
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•  Today’s standard in the meson sector: 2-loop calculations 
 

•  Main obstacle to reaching high precision: determination of the 
LECs: O(p6) LECs proliferation makes the program to pin down/
estimate all of them prohibitive 
 

•  In a specific process, only a limited number of LECs appear 
 
•  The LECs calculable if QCD solvable, instead 

–  Determined from experimental measurement 
–  Estimated with models: Resonances, large NC 

–  Computed on the lattice 
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1.4   ChPT in the meson sector: precision calculations 
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2.   Success: ππ  scattering 



2.1  ππ scattering lengths 
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•  ππ  scattering computed early on, one of the first applications of SU(2) x SU(2)                 
       converge better 

•  The scattering lengths : computed at NLO by Gasser & Leutwyler’83 
 

 
 

•  The momentum dependence is reflected in a chiral log in aI
0 

 
 
 
 
 

 

G. Colangelo 

How large are the higher orders? 



2.2  Roy equations 
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•  Unitarity effects can be calculated exactly using dispersive methods 
 
•  Unitarity, analyticity and crossing symmetry ≡ Roy equations 
 
•  Input: imaginary parts above a matching point (e.g. smatch~ 0.8 GeV)            

   two subtraction constants, e.g.      and 
 

•  Output: the full ππ scattering amplitude below smatch 
                      extended recently up to smatch = 1.15 GeV 
 

•  Numerical solutions of the Roy equations 
Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s)  
Bern group: Ananthanarayan, Colangelo, Gasser and Leutwyler’00 
                   Caprini, Colangelo, Leutwyler’11 
Orsay group: Descotes-Genon, Fuchs, Girlanda and Stern’01 
Madrid-Cracow group: Garcia-Martin, Kamiński  Pelaez, Ruiz de Elvira,Yndurain’11 

  a0
0

  a2
0

Caprini, Colangelo,  
Leutwyler’11 
 



2.3  Combining ChPT and dispersion relations:  
       A happy marriage 
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•  In ChPT the two subtraction constants are predicted  

•  Subtracting the amplitude at threshold (    ,     ) is not mandatory 
 

•  The freedom in the choice of the subtraction point can be exploited to use 
the chiral expansion where it converges best, i.e. below threshold 

G. Colangelo 

  a0
0

  a2
0
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•  Perfect agreement with data 

•  Isospin breaking corrections  
for Kl4 data  

Colangelo, Gasser, Rusetsky’09 
Bernard, Descotes-Genon,  
Knecht ‘13 ‘14  
 



2.4  ππ  as a building block 

 
 
 

 
 

Emilie Passemar 12 

•  Extremely precise extraction of ππ scattering using ChPT and dispersion 
relations 

 
 

•  Similar works done solving Roy-Steiner equations for  
–  Kπ  :  Buettiker, Descotes-Genon, Moussallam’07 
–  πN :  Hoferichter, Ruiz de Elvira, Kubis, Meißner’15 

        See talk by B. Kubis 
 

•  Compare to lattice results 
 
 

•  Use these as building blocks for phenomenology: 
–  ππ   rescattering:  e.g., π form factors, e+e- → ππ, γγ → ππ,  
ω/φ/η→ 3π,  τ → 3πντ, J/Ψ→γπ0π0. B →3π, B → J/Ψππ, etc.. 
       See e.g. talks by A. Pilloni, B. Moussallam, R. Kamiński 

–  Kπ rescattering: e.g., Kπ form factors, K → ππeνe, τ → Kπντ, �
τ → Kππντ, D → Kππ, B → Kπ 

 

 
 
 
  



 ChPT  Dispersion Relations

Garcia-Martin et al’09 

2.4  ππ  as a building block 
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3.  η  → 3π  and light quark masses 



3.1   η→ π+ π- π0  

•  Decay forbidden by isospin symmetry 
 
 
 

 

•          effects are small         Sutherland’66, Bell & Sutherland’68 
          Baur, Kambor, Wyler’96, Ditsche, Kubis, Meissner’09 

 

•  Decay rate measures the size of isospin breaking (mu − md) in the SM:  
 

 

             Clean access to (mu− md) 
 

 
 

•   
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3.2   ChPT 

•  Slow convergence of the chiral series (SU(3) ChPT) 

 

•  CHPT amplitudes have problems with measured Dalitz plot distributions 

•  Main deficiency: strong ππ rescattering included only perturbatively 

•  Large ππ  final state interactions  
 

        call for a dispersive treatment :  
–  analyticity, unitarity and crossing symmetry 
–  Take into account all the rescattering effects 

 
•  Match to CHPT amplitude to obtain Q from rates 

 
      

 
 

 
Γη→3π = 66 + 94 +100 + ...( )eV = 300 ±12( )eV

LO NLO NNLO 

LO: 
NLO: 
 NNLO: PDG’14 

Osborn, Wallace’70 

Gasser & Leutwyler’85 

 Bijnens  & Ghorbani’07 
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3.3   Dispersive method 

•  Decomposition of the amplitude as a function of ππ  isospin states  
 
  
 
 
 
 
 

Ø         isospin I rescattering in two particles  
Ø  Amplitude in terms of S and P waves       exact up to NNLO (O(p6)) 
Ø  Main two body rescattering corrections inside MI 
 

•  Unitary relation for MI(s): 

 
 
 
 
 

 
 
 
 
 
 
 

 

 
      
 

 
 
              
 
 
 

 
 

 
 
 
 

 
 
 
 

 
 

( ) ( )0 1 1 2 2 2
2( , , ) ( ) ( ) ( ) ( ) ( ) ( )
3

M s t u M s s u M t s t M u M t M u M s= + − + − + + −

IM
Fuchs, Sazdjian & Stern’93 

Anisovich & Leutwyler’96 

  
disc MI (s) = 2i  MI (s) + M̂I (s)( )  sinδ I (s)e− iδ I (s)θ s − 4Mπ

2( )
right-hand cut  left-hand cut  

G. Colangelo, S. Lanz,  
H. Leutwyler , E.P., in progress 
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   disc MI (s)⎡⎣ ⎤⎦ ≡ disc fℓ
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3.3   Dispersive method 
 

•  Unitary relation for MI(s): 

 
•  Dispersion relation for the MI’s 

 
 
 
 
 

•                     : singularities in the t and u channels, depend on the other   
        subtract           from the partial wave projection of                           
        Angular averages of the other functions        Coupled equations 
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G. Colangelo, S. Lanz,  
H. Leutwyler , E.P. 
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3.4   Combining ChPT and dispersion relations 

•  As for ππ,  combine dispersion relations with ChPT where it works the best 

•  Use representation holding up to and including NNLO  
ππ partial-wave discontinuities for l = 0,1 only and I=0,1,2           

•  Interesting matching point: Adler zero 
The real part of the amplitude along the line s=u has a zero 
Chiral SU(2) prediction          small higher order corrections             

 

 
      

 
 

Anisovich & Leutwyler’96  

19 Emilie Passemar 



3.5   Different recent analyses 

1.  Schneider, Kubis, Ditsche 2011: 2-loop NREFT approach 
Allows	inves+ga+on	of	isospin-viola+ng	correc+ons	
	

2.  Kampf, Knecht, Novotny, Zdrahal 2011: Analytic dispersive approach 
Match	to	absorp+ve	part	at	NNLO	along	t=u										R	(Q)	
Problem:	do	not	reproduce	the	Adler’s	zero	

 

3.  Guo et al. 2015: JPAC analysis, Khuri-Treiman equations 
-  Madrid/Cracow	ππ	phase	shiIs,	3	subtrac+on	constants	
-  Match	to	NLO	ChPT	near	Adler	zero	

4.  Albaladejo, Moussallam 2015: solve Khuri-Treiman equations 
–  Matching	at	NLO	

–  Include	coupled	channel	KK	and	ηπ	
	

5.  Colangelo, Lanz, Leutwyler, E.P. in progress: dispersive approach following 
Anisovich, Leutwyler 
–  Electromagne+c	effects	to	NLO	fully	taken	into	account	
–  Matching	to	one	loop	ChPT	:	Taylor	expand	the	par+al	wave	around	s=0	

 
 
 

 
      

 
 

See talk by B. Moussallam 
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(Ditsche,	Kubis,	Meißner’09)	



3.6   Dalitz plot parameters: Charged channel 

•  Dalitz plot measurement of  η→ π+ π- π0  
 

Amplitude expanded in X and Y around X=Y=0 

 
      

 
 

  Ac s, t,u( ) 2
= N 1 + aY + bY 2 + dX 2 + fY 3( ) ( )3

2 c

X u t
M Qη

= −

( )( )0

23 1
2 c

Y M M s
M Q η π

η
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02cQ M M Mη π π+≡ − −
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FIG. 7: (Color online) The experimental background
subtracted Dalitz plot distribution represented by the
two dimensional histogram with 371 bins. Only bins
used for the Dalitz parameter fits are shown. The

physical border is indicated by the red line.

TABLE V: Summary of the systematic errors for the
asymmetries.

syst. error (⇥105) �ALR �AQ �AS

EGmin ±1 ±0 ±4

BkgSub ±5 ±3 ±16

✓+� , ✓�� cut +2
�0

+0
�2

+2
�0

�te cut +49
�92

+48
�22

+ 7
�15

�te ��t⇡ cut +0
�2

+3
�0

+0
�1

✓⇤�� cut + 1
�57

+3
�4

+0
�8

MM +0
�4

+0
�1

+1
�2

ECL ±9 ±0 ±25

TOTAL + 50
�109

+48
�23

+31
�35

These results confirm the tension with the theoretical
calculations on the b parameter, and also the need for
the f parameter. In comparison to the previous mea-
surements shown in Tab. I, the present results are the
most precise and the first including the g parameter.
The improvement over KLOE(08) analysis comes from
four times larger statistics and improvement in the sys-
tematic uncertainties which are in some cases reduced
by factor 2 � 3. The major improvement in the system-
atic uncertainties comes from the analysis of the e↵ect of
the Event classification with an unbiased prescaled data
sample.

The final values of the charge asymmetries are all con-

X
1− 0.5− 0 0.5 1

   
 

i
N

5000

10000

15000

20000

25000

FIG. 8: (Color online) The experimental background
subtracted Dalitz plot data, Ni, (points with errors),

compared to set #4 fit results (red lines connecting bins
with the same Y value). The row with lowest Ni values

corresponds to the highest Y value (Y = +0.75).
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FIG. 9: (Color online) Distribution of the normalized
residuals, ri, for fit #4.
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3.6   Dalitz plot parameters: Charged channel 

•  Dalitz plot measurement of  η→ π+ π- π0  
 

Amplitude expanded in X and Y around X=Y=0 
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Future measurements: CLAS, GlueX, JEF 
  

−a b d f

KLOE 2008 1.090
(

+20
−9

)

0.124(11) 0.057(+9
−17) 0.140(20)

WASA/COSY 2014 1.144(18) 0.219(51) 0.086(23) 0.115(37)
BESIII 2015 1.128(17) 0.153(17) 0.085(18) 0.173(35)
KLOE 2016 1.095(4) 0.145(6) 0.081(7) 0.141(10)
NNLO CHPT 1.271(75) 0.394(102) 0.055(57) 0.025(160)

NREFT 1.213(14) 0.308(23) 0.050(3) 0.083(19)
JPAC 1.117(35) 0.188(14) 0.079(3) 0.090(3)

KT-elastic (prel.) 1.154 0.202 0.088 0.107
KT-coupled (prel.) 1.146 0.181 0.090 0.116

1



3.7  Comparison of results for α : neutral decay 

  An s, t,u( ) 2
= N 1 + 2α Z( )

  Z = X 2 +Y 2

•  Dalitz plot measurement  
of  η→ 3π0  
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Figure 1: Comparison of various theoretical and experimental results for the

slope parameter α.

Example 1: Q

1
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3.8  Quark mass ratio 

 
 
 
 
•  M(s,t,u) determined through  

the dispersive analysis of  
the data but for N one has  
to rely on ChPT 
 

24 
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Example 1: Q

20 21 22 23 24

Q

χPT O(p4) (Gasser,Leutwyler)

η → 3π

χPT O(p6) (Bijnens,Ghorbani)

dispersive (Anisovich et al.)

dispersive (Kambor et al.)

dispersive (Kampf et al.)

dispersive (Colangelo et al. prel.)

JPAC

Weinberg ’77

kaon mass splitting

Kastner,Neufeld

Flavianet kaon WG

Kl3

lattice (FLAG 2015)

1
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3.8  Quark mass ratio 
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•  Uncertainties in the quark mass ratio (rough attempt) based on fit to KLOE’08 

 
 
 
 
           

 

 
 
 

 

      3. What is the physics impact  !→3π measurement? 
 

!   A clean probe for quark mass ratio: 
 

"  decays through isospin violation: 
"        is small  
"  Amplitude: 

! Uncertainties in quark mass ratio (E. Passemar, talk at AFCI workshop ) 

  

 
 

13 

Q2 =
ms
2 −
m2

md
2 −mu

2

αem

A = (mu −md )A1 +αemA2

Γη→3πDalitz  

m̂ =
mu +md

2

Can be investigated and reduced by  
future experiments, e.g. JEF Preliminary 

 Colangelo, Lanz, Leutwyler,  
E.P., in preparation 



3.9  η → 3π and light quark masses 
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 H. Leutwyler 



4.   Kl4  decays and determination of some LECs 



•  Main interest:   
–  access to ππ threshold region         ππ scattering lengths 
–   form factors, LECs, . . .  

 
 
 

•  Standard problem of the NNLO treatment  
          strong final state rescattering 

 
 
 
 
 

•  Use dispersion relations: 
              matching to CHPT at both one- and two-loop levels: LECs 
 
 

•  Isospin breaking and radiative corrections have been computed  

 

4.1  Kl4 decays 
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2 Decomposition of the Form Factors

Hadronic part of K`4 as 2 ! 2 scattering

k

�L

p1

p2

K+

Aµ

⇡+

⇡�

Mandelstam variables:
s = (p1 + p2)2, t = (k � p1)2, u = (k � p2)2

8

Amoros, Bijnens, Talavera’00 
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Stoffer’13,  
Descotes-Genon, Bernard, Knecht’13, ‘14 

Kinematics and Matrix Element

SM tree-level

K+ ⇡�

⇡+

u

s̄

d

ū

u

¯d

W+

`+

⌫`

9



 
 

4.2  Determination of some LECs 

29 

4 Fit to Data and Matching to �PT

Low-energy constants

Results for the LECs using �PT at NLO and NNLO.

NLO NNLO Bijnens, Ecker (2014)

103 · Lr
1 0.51(2)(6) 0.69(16)(8) 0.53(6)

103 · Lr
2 0.89(5)(7) 0.63(9)(10) 0.81(4)

103 · Lr
3 �2.82(10)(7) �2.63(39)(24) �3.07(20)

�2/dof 141/116 = 1.2 124/122 = 1.0
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4 Fit to Data and Matching to �PT

Fit results for partial waves

5.4

5.6

5.8

6

6.2

6.4

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

F
s
(s
,s

`
)

s/GeV

2

S-wave of F

Dispersive fit to NA48/2 and E865

Projection of the (s, s`)-phase space

NA48/2 data

E865 data

23

Contrary to ChPT, the dispersive 
measurement allows to take  
into account for the curvature  
in the form factors 

Colangelo, E.P., Stoffer’15 
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5.   Conclusion and outlook 



5. Conclusion and Outlook 

Emilie Passemar 

•  ChPT is a very interesting tool at low energy 
–  Model independent 
–  Build amplitude using a power counting scheme       

 

    precise predictions in the meson sector 
 

 
 

•  But when one wants to go to higher energy or more precise prediction 
        nicely complement by dispersion relation: analyticity, unitarity, crossing  
         Ex: ππ scattering, η à 3π, Kl4 decays 
–  η à 3π: extraction of Q, fundamental parameter of the SM  
–  Kl4 : improve knowledge of meson dynamics at low energy 

          LECs 
 
 

•  Challenge: higher energies for B, D decays etc 
–  Coupled channels : see talk by B. Moussallam for an example in η à 3π 
–  Finite energy sum-rules, e.g., see talk by V. Pauk 
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5.   Back-up 



2.1  Low energy constants 
�
�
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•  Recent fit by Ecker and Bijnens of NLO LECs Li (i = 1,…,10)  and 
NNLO LECs Ci (i = 1,…,90) 
Update and extension of Bijnens, Jemos  2012 

 
 

•  New ingredients:   
–  relations li  (Li ; Ci  ) (j  = 1,…, 4) Gasser, Haefeli, Ivanov, Schmid 2007 

       altogether 17 input data 
–  penalize bad convergence of meson masses 
–  intelligent guesses (priors) for 34 (combinations of the ) Ci 
–  renormalization scale  µ = 0.77 GeV 
 
 

•  Fitting procedure: 
–  minimization/random walk in restricted Ci –space 
–  iterate after possible modication of Ci –space 
–  normal  χ2 fit for Li  for (fixed) “best" values of the Ci 

                     “best" values for Li 

 
      

 
 



2.1  Low energy constants 

•  Strong sensitivity to (large-Nc) suppressed L4          
        enforce small L4 (supported by lattice), 103 Lr

4= 0.3;  
NLO: 0.3 ≤ 103 Lr

4 ≤ 0.3 fixed à LA = 2 L1-L2 and L6 automatically suppressed 

•  NNLO only makes sense with certain set of Cr 

•  Except for last column: no estimate of higher-order uncertainties 
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L5

 



2.1  Low energy constants 

•  Reasonable convergence of observables (enforced for masses)  

•  Qualitative evidence for resonance saturation, even for scalars 
 

•   Last 3 columns: good stability 
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3.3   Different recent analyses 

1.  Schneider, Kubis, Ditsche 2011: 2-loop NREFT approach 
-  allows investigation of isospin-violating corrections 
-  relations between charged and neutral Dalitz plots 
 
 

2.  Kampf, Knecht, Novotny, Zdrahal 2011: Analytic dispersive approach 
-  Amplitudes involve 6 parameters (subtraction constants) 
-  Fit to Dalitz plot distribution (KLOE 2008: η → π+π−π0) 
-  Predict Dalitz plot parameter α (neutral decay mode) 
-  Match to absorptive part of NNLO chiral amplitude where differences 

between NLO and NNLO are small           R (Q)  
    Problem: do not reproduce the Adler’s zero 
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3.4   Dalitz plot parameters 

•  Dalitz plot measurement : Amplitude expanded in X and Y around X=Y=0 
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3.3  Qualitative results of our analysis  

•  Plot of Q versus α : 

 
 
•  All the data give consistent results. The preliminary outcome for Q is 

intermediate between the lattice result and the one of Kastner and Neufeld.   

NB: Isospin breaking  
has not been accounted for 

  Q = 20.7 ±1.2
From kaon mass spliting : 

Kastner & Neufeld’08 



3.3  Qualitative results of our analysis  

•  Plot of Q versus α : 

 
 
 
 

•  All  our preliminary results give a negative value for α. In particular the result 
using KLOE data for η→ π+ π- π0 is in perfect agreement with the PDG value! 

NB: Isospin breaking  
has not been accounted for 



2.1  ππ scattering lengths 
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•  ππ  scattering computed early on, one of the first applications of  
SU(2) x SU(2)         converge better           

 the scattering lengths 
 
 

 
•  At NLO: 

 
 
 
 
 

•  Higher order corrections are suppressed by O(m/Λ) , Λ = O(1GeV)                  
        expected to be a few percent 

 

 Gasser & Leutwyler’83 



2.1  ππ  scattering lengths 
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•  This momentum dependence is reflected in a chiral log in aI
0 

How large are yet higher orders? 
Is it at all possible to make a precise prediction? 

G. Colangelo 



2.4  Chiral Predictions for     and   
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Where can we test these predictions?  
 

•  Production experiments πN → ππN, ψ → ππω, B → Dππ, . . . 
 

•  Extraction of ππ scattering amplitude is not simple 

•  Best accuracy in Kl4 data, K → 3π, ππ atoms 

Colangelo, Gasser & Leutwyler’01 

  a0
0

  a0
2



 
 

 
•  With the new much more precise NA48 data it seemed that there was a 

disagreement          isospin breaking corrections  

2.5  Experimental tests 
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 H. Leutwyler 



2.6  On the importance of isospin breaking corrections 
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•  Isospin breaking computed recently   

              Perfect agreement!   

 H. Leutwyler 

Colangelo, Gasser, Rusetsky’09 
Bernard, Descotes-Genon, Knecht ‘13   
 



2.7  ππ  as a building block 
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 H. Leutwyler 

Garcia-Martin et al’09 



5.1  Conclusion 
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•  ChPT is a very interesting tool at low energy 
–  Model independent 
–  Build amplitude using a power counting scheme       

 

    precise predictions in the meson sector 
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 ChPT

Garcia-Martin et al’09 



5.1  Conclusion 
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•  ChPT is a very interesting tool at low energy 
–  Model independent 
–  Build amplitude using a power counting scheme       
–   precise predictions in the meson sector 

 
•  But when one wants to go to higher energy or more precise prediction 

        nicely complement by dispersion relation: analyticity, unitarity, 
crossing Ex: ππ scattering, η à 3π 

 
 

 

 

 
 
 
  

 ChPT  Dispersion Relations

Garcia-Martin et al’09 



5.2  Outlook: Challenges for the future 
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–  Model independent 
–  Build amplitude using a power counting scheme       
–   precise predictions in the meson sector 

 
•  But when one wants to go to higher energy or more precise prediction 

        nicely complemented by dispersion relation: analyticity, unitarity, 
crossing Ex: ππ scattering, η à 3π 
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Garcia-Martin et al’09 


