

Status of the ChPT calculations in the light meson sector

Emilie Passemar Indiana University/Jefferson Lab.

14th International Workshop on Meson Production, Properties and Interaction

Krakow, Poland, June 2 - 8, 2016

- 1. Introduction and Motivation
- 2. Success of ChPT: $\pi\pi$ scattering
- 3. $\eta \rightarrow 3\pi$ and light quark masses
- 4. K_{I4} decays and determination of some LECs
- 5. Conclusion and Outlook

1. Introduction and Motivation

1.1 Hadronic Physics

- New era of precision experiments
 Build amplitudes to look for exotics, hybrid mesons
- Require building blocks:

 $\left[\begin{array}{c} -\pi\pi\\ -\kappa\pi\end{array}\right] \longrightarrow$ ChPT + dispersion relations

- Precise tests of the Standard Model
- Look for physics beyond the Standard Model: High precision at low energy as a key to new physics?

• Limit $m_k \rightarrow 0$

$$\mathcal{L}_{QCD} \rightarrow \left[\mathcal{L}_{QCD}^{0} = -\frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \overline{q}_{L} i \gamma^{\mu} D_{\mu} q_{L} + \overline{q}_{R} i \gamma^{\mu} D_{\mu} q_{R} \right], q = \begin{pmatrix} u \\ d \\ s \end{pmatrix}$$
with $q_{LP} \equiv \frac{1}{2} (1 \mp \gamma_{5}) q$

Symmetry:
$$G \equiv SU(3)_L \otimes SU(3)_R \rightarrow SU(3)_V$$

- Chiral Perturbation Theory: dynamics of the Goldstone bosons (kaons, pions, eta)
- Goldstone bosons interact weakly at low energy and $m_u, m_d \ll m_s < \Lambda_{QCD}$ Expansion organized in external momenta and quark masses

Weinberg's power counting rule

 $p \ll \Lambda_{H} = 4\pi F_{\pi} \sim 1 \text{ GeV}$

$$\mathcal{L}_{eff} = \sum_{d \ge 2} \mathcal{L}_{d} , \mathcal{L}_{d} = \mathcal{O}(p^{d}), p \equiv \{q, m_{q}\}$$

1.3 Chiral expansion

•
$$\mathcal{L}_{ChPT} = \underbrace{\mathcal{L}_{2}}_{PT} + \underbrace{\mathcal{L}_{4}}_{PT} + \underbrace{\mathcal{L}_{6}}_{P} + \ldots$$

LO: $\mathcal{O}(p^{2})$ NLO: $\mathcal{O}(p^{4})$ NNLO: $\mathcal{O}(p^{6})$

- The structure of the lagrangian is fixed by chiral symmetry but not the coupling constants → LECs appearing at each order
- The method has been rigorously established and can be formulated as a set of calculational rules:

 $\mathcal{L}_4 = \sum_{i=1}^{10} \underline{L}_i O_4^i,$

 $\mathcal{L}_6 = \sum_{i=1}^{90} \frac{C_i}{C_i} O_6^i$

- LO: tree level diagrams with \mathcal{L}_2 $\mathcal{L}_2: F_0, B_0$
- NLO: tree level diagrams with \mathcal{L}_4 1-loop diagrams with \mathcal{L}_2
- NNLO: tree level diagrams with \mathcal{L}_{6} $\mathcal{L}_{6} =$ 2-loop diagrams with \mathcal{L}_{2} 1-loop diagrams with one vertex from \mathcal{L}_{4}
- Renormalizable and unitary order by order in the expansion

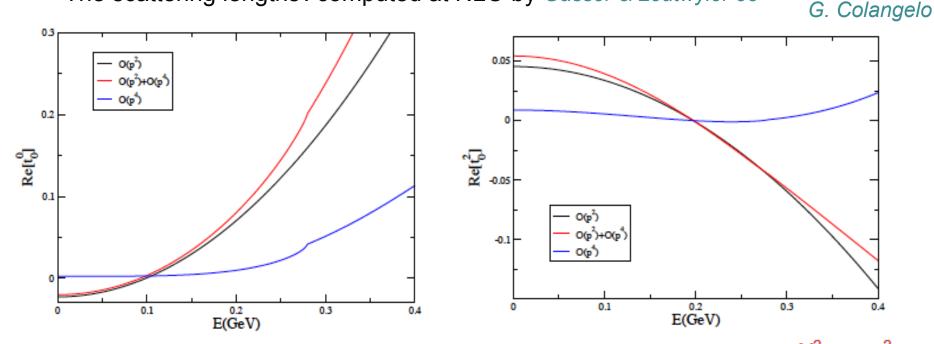
1.4 ChPT in the meson sector: precision calculations

- Today's standard in the meson sector: 2-loop calculations
- Main obstacle to reaching high precision: determination of the LECs: O(p⁶) LECs proliferation makes the program to pin down/ estimate all of them prohibitive
- In a specific process, only a limited number of LECs appear
- The LECs calculable if QCD solvable, instead
 - Determined from experimental measurement
 - Estimated with models: Resonances, large N_C
 - Computed on the lattice

2. Success: $\pi\pi$ scattering

2.1 $\pi\pi$ scattering lengths

- ππ scattering computed early on, one of the first applications of SU(2) x SU(2)
 converge better
- The scattering lengths: computed at NLO by Gasser & Leutwyler'83



• The momentum dependence is reflected in a chiral log in a_0^l $\ell_{\chi} = \frac{M_{\pi}^2}{16\pi^2 F_{\pi}^2} \ln \frac{\mu^2}{M_{\pi}^2}$

$$\implies a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} \left[1 + \frac{9}{2}\ell_{\chi} + \dots \right]$$

How large are the higher orders?

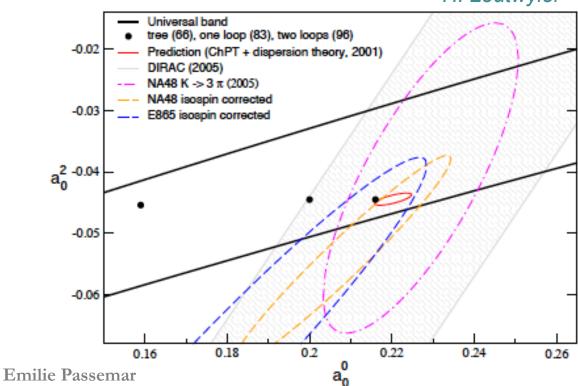
2.2 Roy equations

- Unitarity effects can be calculated *exactly* using dispersive methods
- Unitarity, analyticity and crossing symmetry = Roy equations
- Input: imaginary parts above a matching point (e.g. $s_{match} \sim 0.8$ GeV) two subtraction constants, e.g. a_0^0 and a_2^0
- Output: the full $\pi\pi$ scattering amplitude below s_{match} \implies extended recently up to $s_{match} = 1.15 \text{ GeV}$
 - Caprini, Colangelo, Leutwyler'11
- Numerical solutions of the Roy equations Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s) Bern group: Ananthanarayan, Colangelo, Gasser and Leutwyler'00 Caprini, Colangelo, Leutwyler'11 Orsay group: Descotes-Genon, Fuchs, Girlanda and Stern'01 Madrid-Cracow group: Garcia-Martin, Kamiński Pelaez, Ruiz de Elvira, Yndurain'11

2.3 Combining ChPT and dispersion relations: A happy marriage

G. Colangelo

- In ChPT the two subtraction constants are predicted
- Subtracting the amplitude at threshold (a_0^0, a_2^0) is not mandatory
- The freedom in the choice of the subtraction point can be exploited to use the chiral expansion where it converges best, i.e. below threshold



H. Leutwyler

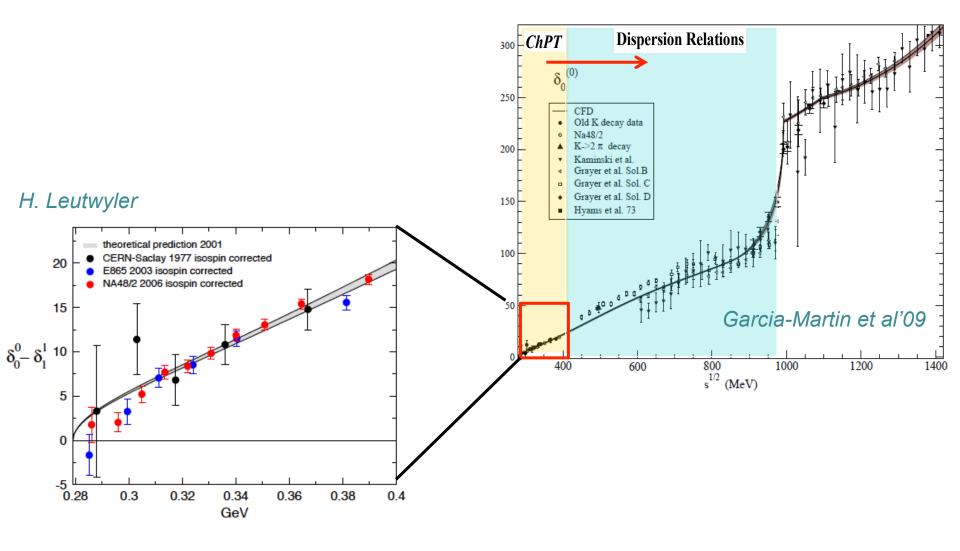
- Perfect agreement with data
- Isospin breaking corrections for K_{I4} data

Colangelo, Gasser, Rusetsky'09 Bernard, Descotes-Genon, Knecht '13 '14

2.4 $\pi\pi$ as a building block

- Extremely precise extraction of $\pi\pi$ scattering using ChPT and dispersion relations
- Similar works done solving Roy-Steiner equations for
 - Kπ : Buettiker, Descotes-Genon, Moussallam'07
 - πN: Hoferichter, Ruiz de Elvira, Kubis, Meißner'15
 See talk by *B. Kubis*
- Compare to lattice results
- Use these as building blocks for phenomenology:
 - ππ rescattering: e.g., π form factors, e⁺e⁻ → ππ, γγ → ππ, ω/φ/η→ 3π, τ→ 3πν_τ, J/Ψ→γπ⁰π⁰. B → 3π, B → J/Ψππ, etc..
 See e.g. talks by *A. Pilloni*, *B. Moussallam*, *R. Kamiński*
 - $\begin{array}{l} \quad K\pi \ rescattering: e.g., \ K\pi \ form \ factors, \ K \rightarrow \pi \pi ev_e, \ τ \rightarrow K \pi v_{\tau,} \\ τ \rightarrow K \pi \pi v_{\tau,} D \rightarrow K \pi \pi, \ B \rightarrow K \pi \end{array}$

2.4 $\pi\pi$ as a building block



3. $\eta \rightarrow 3\pi$ and light quark masses

3.1
$$\eta \rightarrow \pi^+ \pi^- \pi^0$$

• Decay forbidden by isospin symmetry
 $A = (m_u - m_d)A_1 + \alpha_{em}A_2$
 $\eta = \pi^- p_{\pi^-}$

- *α_{em}* effects are small Sutherland'66, Bell & Sutherland'68 Baur, Kambor, Wyler'96, Ditsche, Kubis, Meissner'09
- Decay rate measures the size of isospin breaking $(m_u m_d)$ in the SM:

$$L_{QCD} \rightarrow L_{IB} = -\frac{m_u - m_d}{2} \left(\overline{u}u - \overline{d}d \right)$$

Clean access to $(m_u - m_d)$

$$\sim$$
 Clean access to $(m_u - m_d)$

$$\Gamma_{\eta \to 3\pi} \propto \int |A(s,t,u)|^2 \propto Q^{-4} \qquad \Longrightarrow \qquad Q^2 \equiv \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2} \qquad \qquad \left[\widehat{m} \equiv \frac{m_d + m_u}{2} \right]$$

3.2 ChPT

• Slow convergence of the chiral series (SU(3) ChPT) LO: Osborn, Wallace '70

$$\Gamma_{\eta \to 3\pi} = \begin{pmatrix} 66 + 94 + 100 + ... \end{pmatrix} eV = (300 \pm 12) eV$$

$$MLO: Gasser \& Leutwyler' 85$$

$$NLO: Bijnens \& Ghorbani'07$$

$$PDG'14$$

- CHPT amplitudes have problems with measured Dalitz plot distributions
- Main deficiency: strong $\pi\pi$ rescattering included only perturbatively
- Large $\pi\pi$ final state interactions
 - call for a dispersive treatment :
 - analyticity, unitarity and crossing symmetry
 - Take into account all the rescattering effects
- Match to CHPT amplitude to obtain Q from rates

3.3 Dispersive method

G. Colangelo, S. Lanz, *H.* Leutwyler , *E.P.*, in progress

• Decomposition of the amplitude as a function of $\pi\pi$ isospin states

 $M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$

Fuchs, Sazdjian & Stern'93 Anisovich & Leutwyler'96

- $> M_I$ isospin *I* rescattering in two particles
- > Amplitude in terms of S and P waves \implies exact up to NNLO ($\mathcal{O}(p^6)$)
- Main two body rescattering corrections inside M_I
- Unitary relation for $M_{l}(s)$: $disc[M_{I}(s)] \equiv disc[f_{\ell}^{I}(s)] \propto t_{\ell}^{*}(s)f_{\ell}^{I}(s)$ $\implies f_{1}^{I}(s) = M_{I}(s) + \hat{M}_{I}(s)$

$$\frac{disc \ M_{I}(s) = 2i \left(M_{I}(s) + \hat{M}_{I}(s) \right) \ \sin \delta_{I}(s) e^{-i\delta_{I}(s)} \theta \left(s - 4M_{\pi}^{2} \right)}{right-hand \ cut}$$

3.3 Dispersive method

G. Colangelo, S. Lanz, H. Leutwyler , E.P.

• Unitary relation for M_I(s):

$$\frac{disc \ M_{I}(s) = 2i \left(M_{I}(s) + \hat{M}_{I}(s) \right) \ \sin \delta_{I}(s) e^{-i\delta_{I}(s)} \theta \left(s - 4M_{\pi}^{2} \right)}{right-hand \ cut}$$

• Dispersion relation for the M_l's

$$M_{I}(s) = \Omega_{I}(s) \left(P_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{n}} \frac{\sin \delta_{I}(s') \hat{M}_{I}(s')}{|\Omega_{I}(s')| (s' - s - i\varepsilon)} \right) \left[\Omega_{I}(s) = \exp\left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s' - s - i\varepsilon)}\right) \right]$$

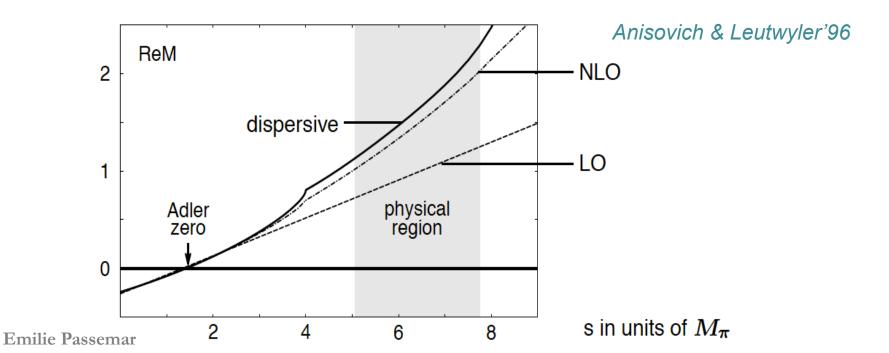
Omnès function

M_I(s) singularities in the t and u channels, depend on the other *M_I(s)* subtract *M_I(s)* from the partial wave projection of *M(s,t,u)*

 Angular averages of the other functions
 Coupled equations

3.4 Combining ChPT and dispersion relations

- As for $\pi\pi$, combine dispersion relations with ChPT where it works the best
- Use representation holding up to and including NNLO $\pi\pi$ partial-wave discontinuities for $\ell = 0,1$ only and I=0,1,2
- Interesting matching point: Adler zero
 The real part of the amplitude along the line s=u has a zero
 Chiral SU(2) prediction small higher order corrections



3.5 Different recent analyses

- 1. Schneider, Kubis, Ditsche 2011: 2-loop NREFT approach Allows investigation of isospin-violating corrections
- 2. Kampf, Knecht, Novotny, Zdrahal 2011: Analytic dispersive approach Match to absorptive part at NNLO along t=u R (Q)
 Problem: do not reproduce the Adler's zero
- 3. Guo et al. 2015: JPAC analysis, Khuri-Treiman equations
 - Madrid/Cracow ππ phase shifts, 3 subtraction constants
 - Match to NLO ChPT near Adler zero
- 4. Albaladejo, Moussallam 2015: solve Khuri-Treiman equations
 - Matching at NLO
 - Include coupled channel KK and $\eta\pi$

5. Colangelo, Lanz, Leutwyler, E.P. in progress: dispersive approach following Anisovich, Leutwyler (Ditsche, Kubis, Meißner'09)

- Electromagnetic effects to NLO fully taken into account
- Matching to one loop ChPT : Taylor expand the partial wave around s=0

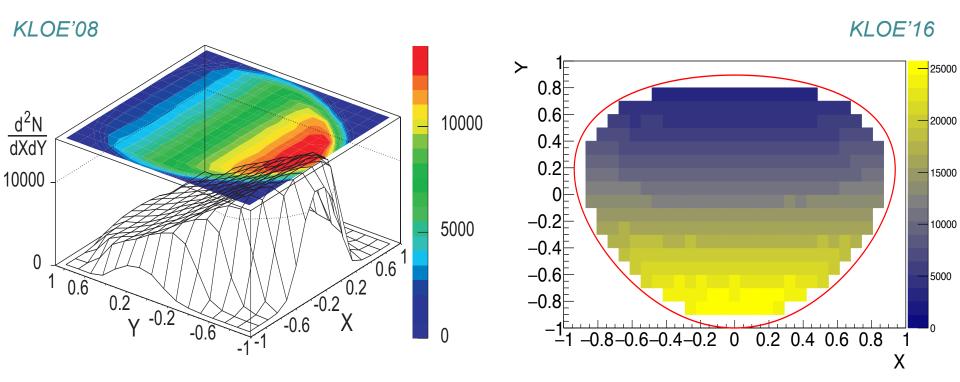
See talk by *B. Moussallam*

3.6 Dalitz plot parameters: Charged channel

Dalitz plot measurement of η→ π⁺ π⁻ π⁰
 Amplitude expanded in X and Y around X=Y=0

$$Y = \frac{3}{2M_{\eta}Q_{c}} \left(\left(M_{\eta} - M_{\pi^{0}} \right)^{2} - s \right) - 1$$

$$\left|A_{c}(s,t,u)\right|^{2} = N\left(1 + aY + bY^{2} + dX^{2} + fY^{3}\right) \qquad X = \frac{\sqrt{3}}{2M_{\eta}Q_{c}}(u-t) \qquad Q_{c} \equiv M_{\eta} - 2M_{\pi^{+}} - M_{\pi^{0}}$$



3.6 Dalitz plot parameters: Charged channel

• Dalitz plot measurement of $\eta \rightarrow \pi^+ \pi^- \pi^0$ Amplitude expanded in X and Y around X=Y=0

$$Y = \frac{3}{2M_{\eta}Q_{c}} \left(\left(M_{\eta} - M_{\pi^{0}} \right)^{2} - s \right) - 1$$

$$|A_{c}(s,t,u)|^{2} = N(1+aY+bY^{2}+dX^{2}+fY^{3})$$

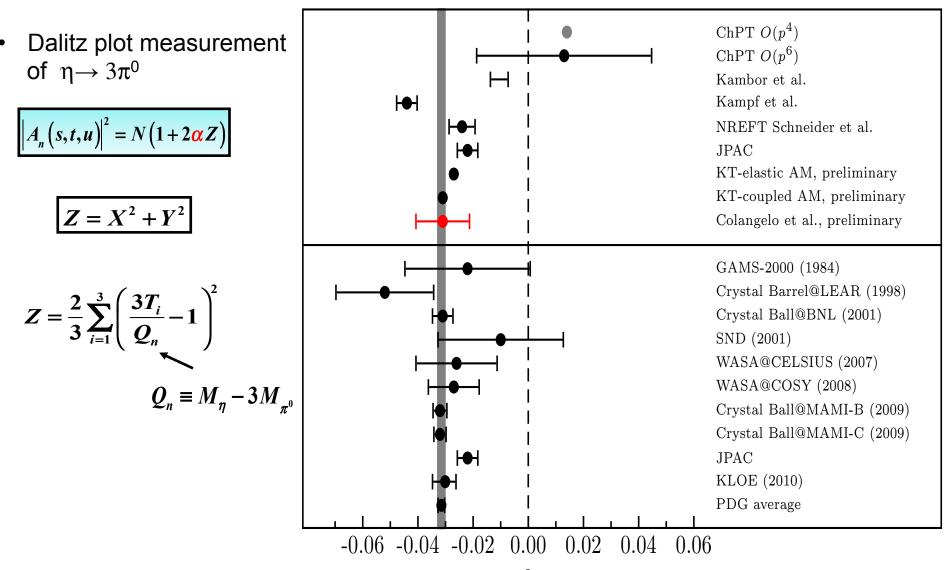
$$X = \frac{\sqrt{3}}{2M_{\eta}Q_c} (u-t)$$

$$Q_c \equiv M_\eta - 2M_{\pi^+} - M_{\pi^0}$$

	-a	b	d	f
KLOE 2008	$1.090 \begin{pmatrix} +20\\ -9 \end{pmatrix}$	0.124(11)	$0.057(^{+9}_{-17})$	0.140(20)
WASA/COSY 2014	1.144(18)	0.219(51)	0.086(23)	0.115(37)
BESIII 2015	1.128(17)	0.153(17)	0.085(18)	0.173(35)
KLOE 2016	1.095(4)	0.145(6)	0.081(7)	0.141(10)
NNLO CHPT	1.271(75)	0.394(102)	0.055(57)	0.025(160)
NREFT	1.213(14)	0.308(23)	0.050(3)	0.083(19)
JPAC	1.117(35)	0.188(14)	0.079(3)	0.090(3)
KT-elastic (prel.)	1.154	0.202	0.088	0.107
KT-coupled (prel.)	1.146	0.181	0.090	0.116

Future measurements: CLAS, GlueX, JEF

3.7 Comparison of results for α : neutral decay

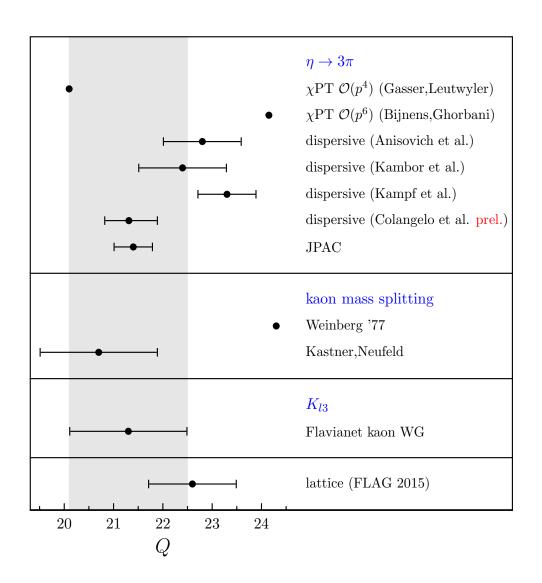


$$\left|\Gamma_{\eta\to 3\pi}\propto\int\left|A(s,t,u)\right|^2\propto Q^{-4}$$

$$Q^{2} \equiv \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}} \qquad \left[\widehat{m} \equiv \frac{m_{d} + m_{u}}{2} \right]$$

$$A(s,t,u) = \frac{N}{Q^2}M(s,t,u)$$

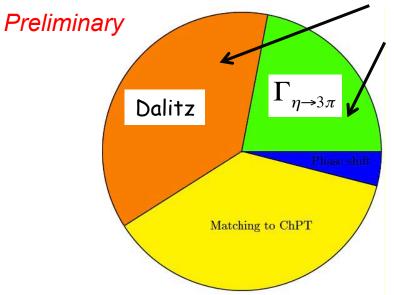
• M(s,t,u) determined through the dispersive analysis of the data but for N one has to rely on ChPT



3.8 Quark mass ratio

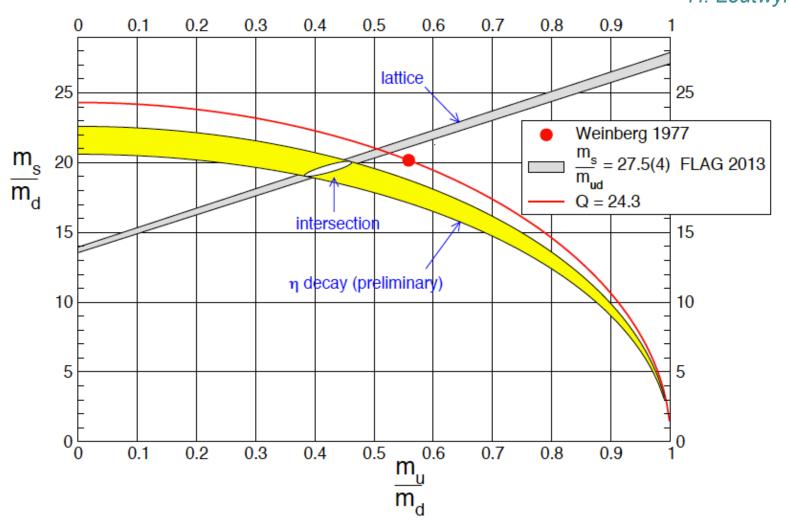
Colangelo, Lanz, Leutwyler, *E.P.*, in preparation

• Uncertainties in the quark mass ratio (rough attempt) based on fit to KLOE'08



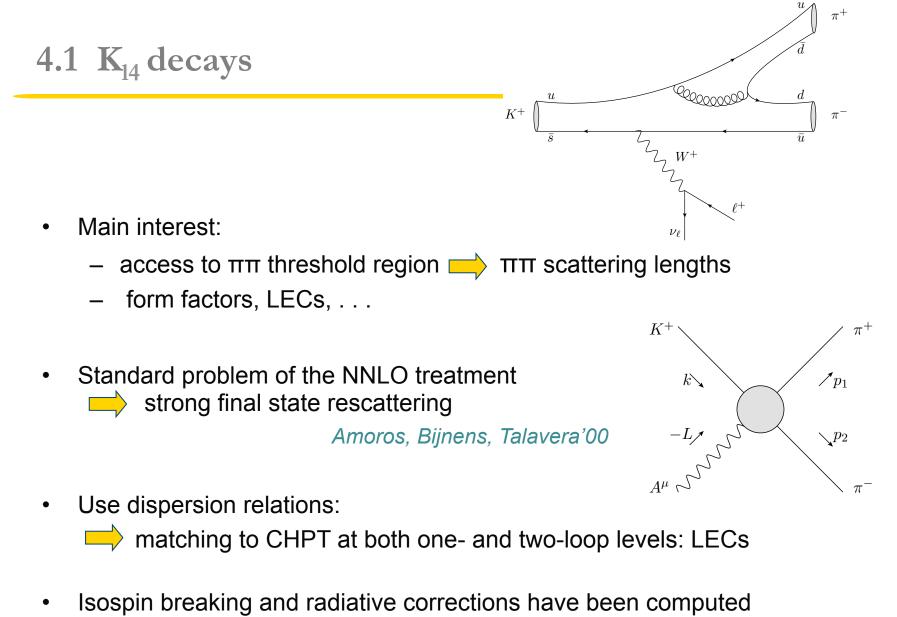
Can be investigated and reduced by future experiments, e.g. *JEF*

3.9 $\eta \rightarrow 3\pi$ and light quark masses



H. Leutwyler

4. K₁₄ decays and determination of some LECs



Stoffer'13, Descotes-Genon, Bernard, Knecht'13, '14

4.2 Determination of some LECs



Colangelo, E.P., Stoffer'15

Contrary to ChPT, the dispersive measurement allows to take into account for the curvature in the form factors

	NLO	NNLO	Bijnens, Ecker (2014)
$10^{3} \cdot L_{1}^{r}$	0.51(2)(6)	0.69(16)(8)	0.53(6)
$10^3 \cdot L_2^r$	0.89(5)(7)	0.63(9)(10)	0.81(4)
$10^3 \cdot L_3^r$	-2.82(10)(7)	-2.63(39)(24)	-3.07(20)
$\chi^2/{ m dof}$	141/116 = 1.2	124/122 = 1.0	

5. Conclusion and outlook

5. Conclusion and Outlook

- ChPT is a very interesting tool at low energy
 - Model independent
 - Build amplitude using a power counting scheme
 - precise predictions in the meson sector
- But when one wants to go to higher energy or more precise prediction

 nicely complement by dispersion relation: analyticity, unitarity, crossing
 Ex: ππ scattering, η → 3π, K_{I4} decays
 - $-\eta \rightarrow 3\pi$: extraction of Q, fundamental parameter of the SM
 - K_{I4}: improve knowledge of meson dynamics at low energy
 LECs
- Challenge: higher energies for B, D decays etc
 - Coupled channels : see talk by *B. Moussallam* for an example in $\eta \rightarrow 3\pi$
 - Finite energy sum-rules, e.g., see talk by V. Pauk

5. Back-up

2.1 Low energy constants

- Recent fit by Ecker and Bijnens of NLO LECs Li (i = 1,...,10) and NNLO LECs Ci (i = 1,...,90) Update and extension of Bijnens, Jemos 2012
- New ingredients:
 - relations li (Li; Ci) (j = 1,..., 4) Gasser, Haefeli, Ivanov, Schmid 2007
 - altogether 17 input data
 - penalize bad convergence of meson masses
 - intelligent guesses (priors) for 34 (combinations of the) Ci
 - renormalization scale μ = 0.77 GeV
- Fitting procedure:
 - minimization/random walk in restricted Ci -space
 - iterate after possible modication of Ci -space
 - normal $\chi 2$ fit for Li for (fixed) "best" values of the Ci
 - "best" values for Li

	NNLO free fit	NNLO BE14	NLO 2014	GL 1985
$10^{3}L_{A}^{r}$	0.68(11)	0.24(11)	0.4(2)	
$10^{3}L_{1}^{r}$	0.64(06)	0.53(06)	1.0(1)	0.7(3)
$10^{3}L_{2}^{r}$	0.59(04)	0.81(04)	1.6(2)	1.3(7)
$10^{3}L_{3}^{r}$	-2.80(20)	-3.07(20)	-3.8(3)	-4.4(2.5)
$10^{3}L_{4}^{r}$	0.76(18)	0.3	0.0(3)	-0.3(5)
$10^{3}L_{5}^{\prime}$	0.50(07)	1.01(06)	1.2(1)	1.4(5)
$10^{3}L_{6}^{r}$	0.49(25)	0.14(05)	0.0(4)	-0.2(3)
$10^{3}L_{7}^{r}$	-0.19(08)	-0.34(09)	-0.3(2)	-0.4(2)
$10^{3}L_{8}^{r}$	0.17(11)	0.47(10)	0.5(2)	0.9(3)
F_0 [MeV]	64	71		

- Strong sensitivity to (large-Nc) suppressed L₄
 → enforce small L4 (supported by lattice), 10³ L^r₄ = 0.3;
 NLO: 0.3 ≤ 10³ L^r₄ ≤ 0.3 fixed → L_A = 2 L₁-L₂ and L₆ automatically suppressed
- NNLO only makes sense with certain set of Cr
- Except for last column: no estimate of higher-order uncertainties

	NNLO free fit	NNLO BE14	NLO 2014	GL 1985
$10^{3}L_{A}^{r}$	0.68(11)	0.24(11)	0.4(2)	
$10^{3}L_{1}^{r}$	0.64(06)	0.53(06)	1.0(1)	0.7(3)
$10^{3}L_{2}^{r}$	0.59(04)	0.81(04)	1.6(2)	1.3(7)
$10^{3}L_{3}^{r}$	-2.80(20)	-3.07(20)	-3.8(3)	-4.4(2.5)
$10^{3}L_{4}^{r}$	0.76(18)	0.3	0.0(3)	-0.3(5)
$10^{3}L_{5}^{r}$	0.50(07)	1.01(06)	1.2(1)	1.4(5)
$10^{3}L_{6}^{r}$	0.49(25)	0.14(05)	0.0(4)	-0.2(3)
$10^{3}L_{7}^{r}$	-0.19(08)	-0.34(09)	-0.3(2)	-0.4(2)
$10^{3}L_{8}^{r}$	0.17(11)	0.47(10)	0.5(2)	0.9(3)
<i>F</i> ₀ [MeV]	64	71		

- Reasonable convergence of observables (enforced for masses)
- Qualitative evidence for resonance saturation, even for scalars
- Last 3 columns: good stability

- 1. Schneider, Kubis, Ditsche 2011: 2-loop NREFT approach
 - allows investigation of isospin-violating corrections
 - relations between charged and neutral Dalitz plots
- 2. Kampf, Knecht, Novotny, Zdrahal 2011: Analytic dispersive approach
 - Amplitudes involve 6 parameters (subtraction constants)
 - Fit to Dalitz plot distribution (KLOE 2008: $\eta \rightarrow \pi + \pi \pi 0$)
 - Predict Dalitz plot parameter α (neutral decay mode)
 - Match to absorptive part of NNLO chiral amplitude where differences between NLO and NNLO are small R (Q)

Problem: do not reproduce the Adler's zero

3.3 Different recent analyses

- 3. Guo et al. 2015: JPAC analysis, Khuri Treiman equations solved numerically using Pasquier inversion techniques
 - Madrid/Cracow $\pi\pi$ phase shifts, 3 subtraction constants
 - Fit experimental Dalitz plot (WASA/COSY 2014: η → π⁺π⁻π⁰)
 predict Dalitz plot parameter α
 - Match to NLO ChPT near Adler zero
- 4. Colangelo, Lanz, Leutwyler, E.P. in progress: dispersive approach following Anisovich, Leutwyler
 - Electromagnetic effects to NLO fully taken into account (*Ditsche, Kubis, Meißner'09*)
 - Dispersive amplitudes: Bern $\pi\pi$ phase shifts, 6 subtraction constants
 - Fit similtanously Charged (WASA, KLOE) and Neutral Dalitz plots (MAMI)
 - Matching to one loop ChPT: Taylor expand the partial wave around s=0

3.3 Different recent analyses

- 3. Guo et al. 2015: JPAC analysis, Khuri Treiman equations solved numerically using Pasquier inversion techniques
 - Madrid/Cracow $\pi\pi$ phase shifts, 3 subtraction constants
 - Fit experimental Dalitz plot (WASA/COSY 2014: η → π⁺π⁻π⁰)
 predict Dalitz plot parameter α
 - Match to NLO ChPT near Adler zero
- 4. Colangelo, Lanz, Leutwyler, E.P. in progress: dispersive approach following Anisovich, Leutwyler
 - Electromagnetic effects to NLO fully taken into account (*Ditsche, Kubis, Meißner'09*)
 - Dispersive amplitudes: Bern $\pi\pi$ phase shifts, 6 subtraction constants
 - Fit similtanously Charged (WASA, KLOE) and Neutral Dalitz plots (MAMI)
 - Matching to one loop ChPT: Taylor expand the partial wave around s=0

3.3 Different recent analyses

- 3. Guo et al. 2015: JPAC analysis, Khuri Treiman equations solved numerically using Pasquier inversion techniques
 - Madrid/Cracow $\pi\pi$ phase shifts, 3 subtraction constants
 - Fit experimental Dalitz plot (WASA/COSY 2014: η → π⁺π⁻π⁰)
 predict Dalitz plot parameter α
 - Match to NLO ChPT near Adler zero
- 4. Colangelo, Lanz, Leutwyler, E.P. in progress: dispersive approach following Anisovich, Leutwyler
 - Electromagnetic effects to NLO fully taken into account (*Ditsche, Kubis, Meißner'09*)
 - Dispersive amplitudes: Bern $\pi\pi$ phase shifts, 6 subtraction constants
 - Fit similtanously Charged (WASA, KLOE) and Neutral Dalitz plots (MAMI)
 - Matching to one loop ChPT: Taylor expand the partial wave around s=0

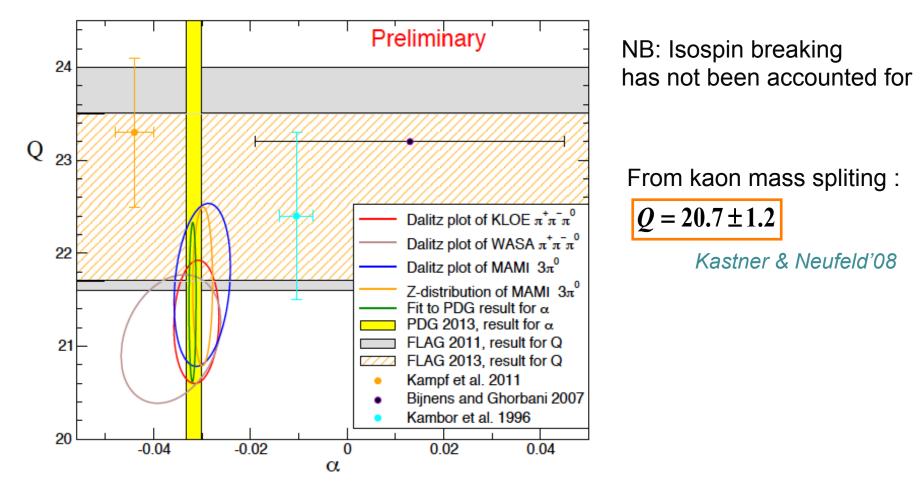
3.4 Dalitz plot parameters

• Dalitz plot measurement : Amplitude expanded in X and Y around X=Y=0

	—a	Ь	d	α
KLOE 2015	1.095(4)	0.145(6)	0.081(7)	
BESIII 2015	1.128(17)	0.153(17)	0.085(18)	-0.055(15)
WASA/COSY 2014	1.144(18)	0.219(51)	0.086(23)	
NNLO CHPT	1.271(75)	0.394(102)	0.055(57)	0.013(32)
KKNZ				-0.044(4)
NREFT	1.213(14)	0.308(23)	0.050(3)	-0.025(5)
JPAC	1.116(32)	0.188(12)	0.063(4)	-0.022(4)
PDG 2014				-0.0315(15)

3.3 Qualitative results of our analysis

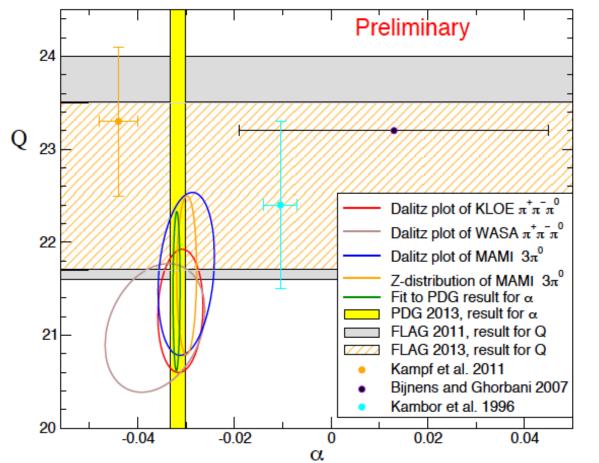
• Plot of Q versus α :



• All the data give consistent results. The preliminary outcome for Q is intermediate between the lattice result and the one of Kastner and Neufeld.

3.3 Qualitative results of our analysis

• Plot of Q versus α :



NB: Isospin breaking has not been accounted for

• All our preliminary results give a negative value for α . In particular the result using KLOE data for $\eta \rightarrow \pi^+ \pi^- \pi^0$ is in perfect agreement with the PDG value!

2.1 $\pi\pi$ scattering lengths

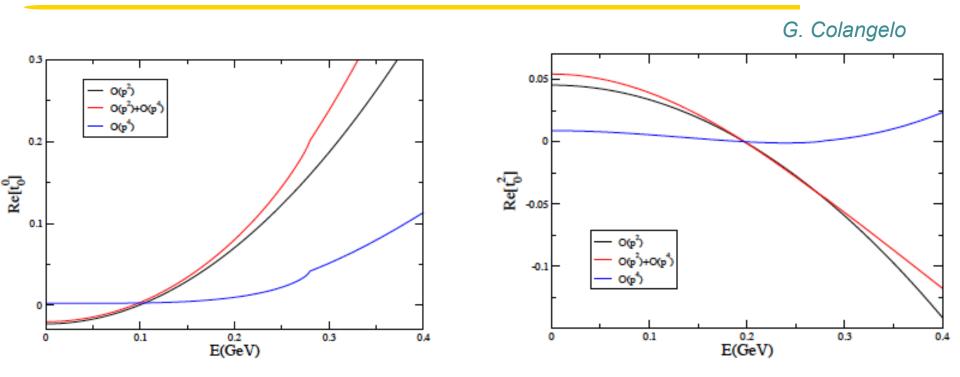
 ππ scattering computed early on, one of the first applications of SU(2) x SU(2) converge better
 the scattering lengths

• At NLO: $a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} \left[1 + \frac{M_\pi^2}{3} \langle r^2 \rangle_S^\pi + \frac{200\pi F_\pi^2 M_\pi^2}{7} (a_2^0 + 2a_2^2) - \frac{M_\pi^2}{672\pi^2 F_\pi^2} (15\bar{\ell}_3 - 353) \right]$ $= 0.16 \cdot 1.25 = 0.20$ $2a_0^0 - 5a_0^2 = \frac{3M_\pi^2}{4\pi F_\pi^2} \left[1 + \frac{M_\pi^2}{3} \langle r^2 \rangle_S^\pi + \frac{41M_\pi^2}{192\pi^2 F_\pi^2} \right] = 0.547 \cdot 1.14 = 0.624$

Higher order corrections are suppressed by O(m/Λ), Λ = O(1GeV)
 → expected to be a few percent

Gasser & Leutwyler'83

2.1 $\pi\pi$ scattering lengths



• This momentum dependence is reflected in a chiral log in a^l₀

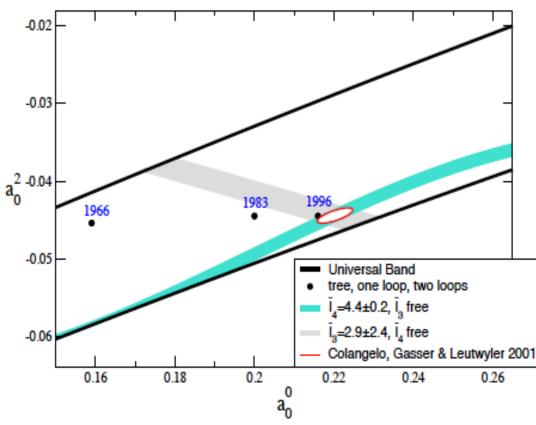
$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} \left[1 + \frac{9}{2}\ell_{\chi} + \dots \right] \qquad a_0^2 = -\frac{M_\pi^2}{16\pi F_\pi^2} \left[1 - \frac{3}{2}\ell_{\chi} + \dots \right]$$

How large are yet higher orders? Is it at all possible to make a precise prediction?

Emilie Passemar

 $\ell_{\chi} = \frac{M_{\pi}^2}{16\pi^2 F_{\pi}^2} \ln \frac{\mu^2}{M_{\pi}^2}$

2.4 Chiral Predictions for a_0^0 and a_0^2



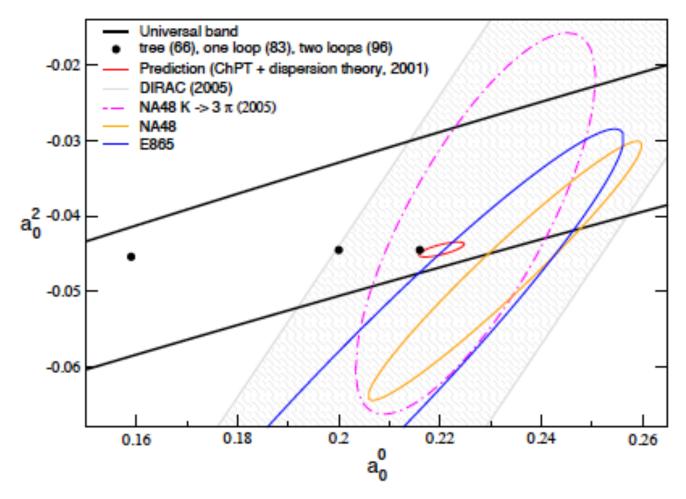
Colangelo, Gasser & Leutwyler'01

Where can we test these predictions?

- Production experiments $\pi N \rightarrow \pi \pi N$, $\psi \rightarrow \pi \pi \omega$, $B \rightarrow D \pi \pi$, . . .
- Extraction of $\pi\pi$ scattering amplitude is not simple
- Best accuracy in K_{I4} data, $K \rightarrow 3\pi$, $\pi\pi$ atoms

Emilie Passemar

2.5 Experimental tests



H. Leutwyler

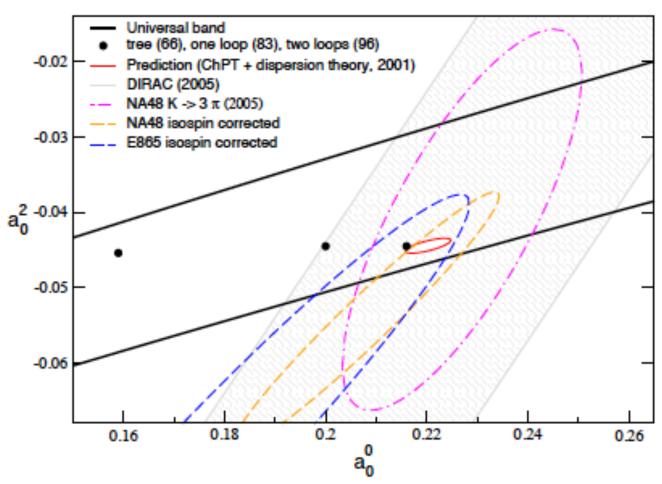
With the new much more precise NA48 data it seemed that there was a disagreement isospin breaking corrections

Emilie Passemar

2.6 On the importance of isospin breaking corrections

Isospin breaking computed recently
 Perfect agreement!

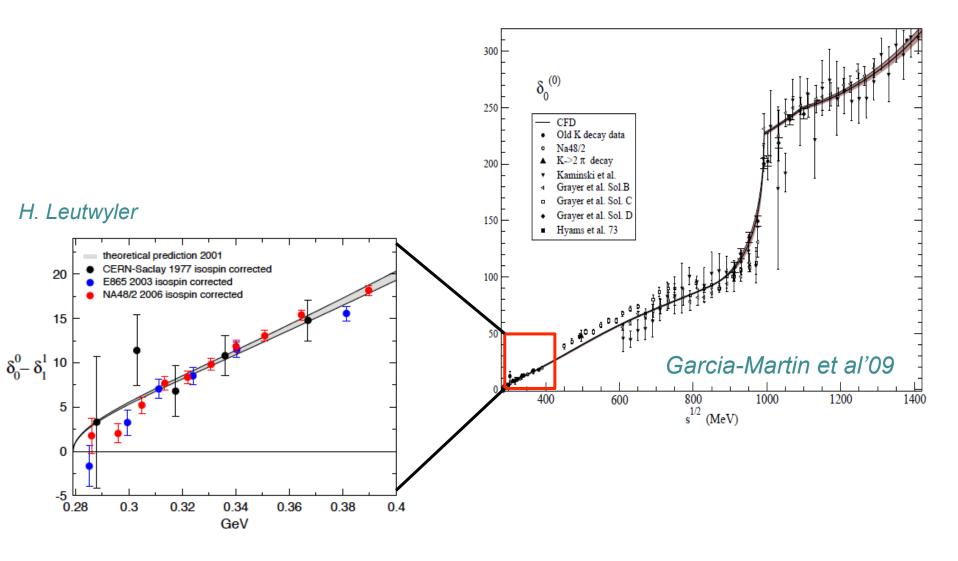
Colangelo, Gasser, Rusetsky'09 Bernard, Descotes-Genon, Knecht '13



H. Leutwyler

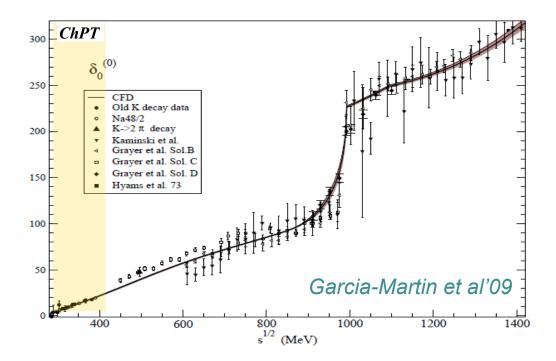
Emilie Passemar

2.7 $\pi\pi$ as a building block



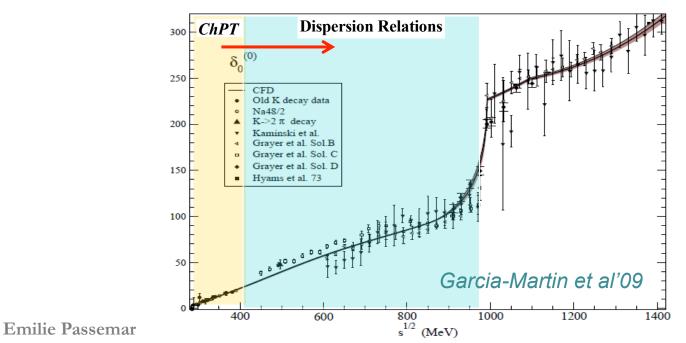
5.1 Conclusion

- ChPT is a very interesting tool at low energy
 - Model independent
 - Build amplitude using a power counting scheme
 - precise predictions in the meson sector



5.1 Conclusion

- ChPT is a very interesting tool at low energy
 - Model independent
 - Build amplitude using a power counting scheme
 - precise predictions in the meson sector
- But when one wants to go to higher energy or more precise prediction incely complement by dispersion relation: analyticity, unitarity, crossing Ex: $\pi\pi$ scattering, $\eta \rightarrow 3\pi$



5.2 Outlook: Challenges for the future

- ChPT is a very interesting tool at low energy
 - Model independent
 - Build amplitude using a power counting scheme
 - precise predictions in the meson sector
- But when one wants to go to higher energy or more precise prediction include the model of th

