A Progress on Formulating

Bethe-Salpeter Kernels

Sixue Qin

Argonne National Laboratory

Fundamental Forces versus Bound States

QCD
(a) (a)

Fundamental Forces versus Bound States

Dyson-Schwinger Equations: Equation of motion of Green functions

Dyson-Schwinger Equations: Equations for mesons

Dyson-Schwinger Equations: Equations for mesons

Gluon propagator

Dyson-Schwinger Equations: Equations for mesons

Gluon propagator

Dyson-Schwinger Equations: Equations for mesons

Gluon propagator

- Scattering kernel

Dyson-Schwinger Equations: Equations for mesons

Gluon propagator

Scattering kernel

The simplest rainbow-ladder truncation:

Rainbow-Ladder truncation: Successes

\uparrow T \& mu = 0 - global properties of hadrons: mass spectra, decay constants, radii ...; hadron structures: FF, PDF, PDA, GPD...

Summary of light meson results$m_{u=d}=5.5 \mathrm{MeV}, m_{s}=125 \mathrm{MeV} \text { at } \mu=1 \mathrm{GeV}$			Vector mesons	(PM, Tandy, PRC60, 055214)		
			$m_{\rho / \omega}$	0.770 GeV		
Pseudoscalar (PM, Roberts, PRC56, 3369)			$m_{\rho / \omega}{ }_{\rho}$	$\begin{array}{ll} 0.770 \mathrm{GeV} & 0.742 \\ 0.216 \mathrm{GeV} & 0.207 \end{array}$		
	expt.	calc.				
$-\langle q q\rangle_{\mu}^{0}$	$(0.236 \mathrm{GeV}){ }^{3}$	$\left(0.241^{\dagger}\right)^{3}$	$m_{K^{*}}$	0.892 GeV	0.936	
m_{π}	0.1385 GeV	0.138^{\dagger}	$f_{K^{*}}$	0.225 GeV	0.241	
			m_{ϕ}	1.020 GeV	1.072	
f_{π}	0.0924 GeV	$0.093{ }^{\dagger}$	f_{ϕ}	0.236 GeV	0.259	
$\begin{aligned} & m_{K} \\ & f_{K} \end{aligned}$	0.496 GeV	$0.497{ }^{\dagger}$	Strong decay (Jarecke, PM, Tandy, PRC67, 035202)			
	0.113 GeV	0.109	$g_{\rho \pi \pi}$	6.02	5.4	
Charge radii (PM, Tandy, PRC62, 055204)			$g_{\phi K K}$	4.64	4.3	
r_{π}^{2}	$0.44 \mathrm{fm}^{2}$	0.45		4.60	4.1	
$r_{K^{+}}^{2}$	$0.34 \mathrm{fm}^{2}$	0.38	Radiative decay		(PM, nucl-th/0112022)	
$r_{K^{0}}^{2}$	-0.054 fm	-0.086	$g_{\rho \pi \bar{\gamma}} / m_{\rho}$	0.74	0.69	
$\gamma \pi \gamma$ transition (PM, Tandy, PRC65, 045211)			$g_{\omega \pi r \gamma} / m_{\omega 0}$	2.31	2.07	
$g_{\pi \gamma \%}$	$\begin{aligned} & 0.50 \\ & 0.42 \mathrm{fm}^{2} \end{aligned}$	0.50	$\begin{aligned} & \left(g_{K^{*} K \gamma} / m_{K}\right)^{+} \\ & \left(g_{K^{*} K \gamma} / m_{K}\right)^{0} \end{aligned}$	$\begin{aligned} & 0.83 \\ & 1.28 \end{aligned}$	0.99	
$r_{\pi \gamma}^{2}$		0.41			1.19	
Weak $K_{l 3}$ decay (PM, Ji, PRD64, 014032)			Scattering length (PM, Cotanch, PRD66, 116010)			
$\lambda_{+}(e 3)$	0.028 0.027		$a_{0}^{0}$$a_{0}^{2}$$a_{1}^{1}$	0.2200 .170		
$\Gamma\left(K_{e 3}\right)$	$7.6 \cdot 10^{6} \mathrm{~s}^{-1}$	7.38		0.044	0.045	
$\Gamma\left(K_{\mu 3}\right)$	$5.2 \cdot 10^{6} \mathrm{~s}^{-1}$	4.90		0.038	0.036	

$\downarrow \mathrm{T} \& \mathrm{mu}>0$ - phase diagram: critical lines, CEP...; properties of QGP: excitation modes, electrical conductivity, shear viscosity to entropy density ratio...

Rainbow-Ladder truncation: Drawbacks

\& Ground state > 1GeV: too small rho-a1 mass splitting;

- Radial excitation states: wrong ordering and magnitudes;
\uparrow Structures: rho monopole form pion EM form factor;

RL truncation fails to describe quantities which are sensitive to details of interaction.

Is there a systematic way to truncate the DSEs in order to approach the full QCD?

Is there a systematic way to truncate the DSEs in order to approach the full QCD?

I. Quark-gluon vertex

II. Scattering kernel

I. Quark-gluon vertex: General structure

I. Quark-gluon vertex: General structure

\uparrow The vertex has $3 \times 4=12$ independent Lorentz structures.
\rightarrow The appearance may be modified in nonperturbative QCD.
I. Quark-gluon vertex: (Abelian) Ward-Green-Takahashi Identities

- Gauge symmetry (vector current cons.): vector WGTI

$$
\begin{aligned}
& \psi(x) \rightarrow \psi(x)+i g \alpha(x) \psi(x) \\
& \bar{\psi}(x) \rightarrow \bar{\psi}(x)-i \operatorname{ig} \alpha(x) \bar{\psi}(x)
\end{aligned}
$$

$$
i q_{\mu} \Gamma_{\mu}(k, p)=S^{-1}(k)-S^{-1}(p)
$$

- Chiral symmetry (axial-vector current cons.): axial-vector WGTI

$$
\begin{aligned}
\psi(x) & \rightarrow \psi(x)+i g \alpha(x) \gamma^{5} \psi(x), \\
\bar{\psi}(x) & \rightarrow \bar{\psi}(x)+i g \alpha(x) \bar{\psi}(x) \gamma^{5},
\end{aligned}
$$

$$
q_{\mu} \Gamma_{\mu}^{A}(k, p)=S^{-1}(k) i \gamma_{5}+i \gamma_{5} S^{-1}(p)-2 i m \Gamma_{5}(k, p)
$$

I. Quark-gluon vertex: (Abelian) Ward-Green-Takahashi Identities

- Gauge symmetry (vector current cons.): vector WGTI

$$
\begin{aligned}
& \psi(x) \rightarrow \psi(x)+i g \alpha(x) \psi(x) \\
& \bar{\psi}(x) \rightarrow \bar{\psi}(x)-i g \alpha(x) \bar{\psi}(x)
\end{aligned}
$$

$$
i q_{\mu} \Gamma_{\mu}(k, p)=S^{-1}(k)-S^{-1}(p)
$$

] Chiral symmetry (axial-vector current cons.): axial-vector WGTI

$$
\begin{aligned}
& \psi(x) \rightarrow \psi(x)+i g \alpha(x) \gamma^{5} \psi(x), \\
& \bar{\psi}(x) \rightarrow \bar{\psi}(x)+i g \alpha(x) \bar{\psi}(x) \gamma^{5},
\end{aligned}
$$

$$
q_{\mu} \Gamma_{\mu}^{A}(k, p)=S^{-1}(k) i \gamma_{5}+i \gamma_{5} S^{-1}(p)-2 i m \Gamma_{5}(k, p)
$$

- Lorentz symmetry + (axial-)vector current conservation: transverse WGTIs
$\delta_{T} \phi^{a}(x)=\delta_{\text {Lorentz }}\left(\delta \phi^{a}(x)\right)=-\frac{i}{2} \epsilon^{\mu \nu} S_{\mu \nu}^{\left(\delta \phi^{a}\right)}\left(\delta \phi^{a}(x)\right)$.
$S_{\mu \nu}^{\text {(spinor) }}=\frac{1}{2} \sigma_{\mu \nu}, \quad\left(S_{\mu \nu}^{(\text {vector) })}\right)_{\beta}^{\alpha}=i\left(\delta_{\mu}^{\alpha} g_{\nu \beta}-\delta_{\nu}^{\alpha} g_{\mu \beta}\right)$;
He, PRD, 80, 016004 (2009)

$$
\begin{aligned}
q_{\mu} \Gamma_{\nu}(k, p)-q_{\nu} \Gamma_{\mu}(k, p)= & S^{-1}(p) \sigma_{\mu \nu}+\sigma_{\mu \nu} S^{-1}(k) \\
& +2 \operatorname{iim} \Gamma_{\mu \nu}(k, p)+t_{\lambda} \varepsilon_{\lambda \mu \nu} \Gamma_{\rho}^{A}(k, p) \\
& +A_{\mu \nu}^{V}(k, p), \\
q_{\mu} \Gamma_{\nu}^{A}(k, p)-q_{\nu} \Gamma_{\mu}^{A}(k, p)= & S^{-1}(p) \sigma_{\mu \nu}^{5}-\sigma_{\mu \nu}^{5} S^{-1}(k) \\
& +t_{\lambda} \varepsilon_{\lambda \mu \nu \rho} \Gamma_{\rho}(k, p) \\
& +V_{\mu \nu}^{A}(k, p), \quad \sigma_{\mu \nu}^{5}=\gamma_{5} \sigma_{\mu \nu}
\end{aligned}
$$

I. Quark-gluon vertex: (Abelian) Ward-Green-Takahashi Identities

- Gauge symmetry (vector current cons.): vector WGTI

$$
\begin{aligned}
& \psi(x) \rightarrow \psi(x)+i g \alpha(x) \psi(x) \\
& \bar{\psi}(x) \rightarrow \bar{\psi}(x)-i \operatorname{ig} \alpha(x) \bar{\psi}(x)
\end{aligned}
$$

$$
i q_{\mu} \Gamma_{\mu}(k, p)=S^{-1}(k)-S^{-1}(p)
$$

] Chiral symmetry (axial-vector current cons.): axial-vector WGTI

$$
\begin{aligned}
& \psi(x) \rightarrow \psi(x)+i g \alpha(x) \gamma^{5} \psi(x), \\
& \bar{\psi}(x) \rightarrow \bar{\psi}(x)+i g \alpha(x) \bar{\psi}(x) \gamma^{5},
\end{aligned}
$$

$$
q_{\mu} \Gamma_{\mu}^{A}(k, p)=S^{-1}(k) i \gamma_{5}+i \gamma_{5} S^{-1}(p)-2 i m \Gamma_{5}(k, p)
$$

- Lorentz symmetry + (axial-)vector current conservation: transverse WGTIs

$$
\begin{array}{rrr}
\delta_{T} \phi^{a}(x)=\delta_{\text {Lorentz }}\left(\delta \phi^{a}(x)\right)=-\frac{i}{2} \epsilon^{\mu \nu} S_{\mu \nu}^{\left(\delta \phi^{a}\right)}\left(\delta \phi^{a}(x)\right) . & q_{\mu} \Gamma_{\nu}(k, p)-q_{\nu} \Gamma_{\mu}(k, p)= & S^{-1}(p) \sigma_{\mu \nu}+\sigma_{\mu \nu} S^{-1}(k) \\
& +2 i m \Gamma_{\mu \nu}(k, p)+t_{\lambda} \varepsilon_{\lambda \mu \nu \rho} \Gamma_{\rho}^{A}(k, p) \\
S_{\mu \nu}^{\text {(spinor) }}=\frac{1}{2} \sigma_{\mu \nu,} \quad\left(S_{\mu \nu}^{(\text {vector) })}\right)_{\beta}^{\alpha}=i\left(\delta_{\mu}^{\alpha} g_{\nu \beta}-\delta_{\nu}^{\alpha} g_{\mu \beta}\right) ; & A_{\mu \nu}^{V}(k, p), \\
& q_{\mu} \Gamma_{\nu}^{A}(k, p)-q_{\nu} \Gamma_{\mu}^{A}(k, p)= & S^{-1}(p) \sigma_{\mu \nu}^{5}-\sigma_{\mu \nu}^{5} S^{-1}(k) \\
& +t_{\lambda} \varepsilon_{\lambda \mu \nu} \Gamma_{\rho}(k, p) \\
& +V_{\mu \nu}^{A}(k, p), \quad \sigma_{\mu \nu}^{5}=\gamma_{5} \sigma_{\mu \nu}
\end{array}
$$

- The WGTIs express the divergences and curls of the vertices.
\downarrow The WGTIs of the vertices in different channels couple together.
\downarrow The WGTIs involve contributions from high-order Green functions.

I. Quark-gluon vertex: Solution of WGTIs

Define two projection tensors and contract them with the transverse WGTIs,

$$
T_{\mu \nu}^{1}=\frac{1}{2} \varepsilon_{\alpha \mu \nu \beta} t_{\alpha} q_{\beta} \mathbf{I}_{\mathrm{D}}, \quad T_{\mu \nu}^{2}=\frac{1}{2} \varepsilon_{\alpha \mu \nu \beta} \gamma_{\alpha} q_{\beta} .
$$

one can decouple the WGTIs and obtain a group of equations for the vector vertex:

$$
\begin{aligned}
q_{\mu} i \Gamma_{\mu}(k, p)= & S^{-1}(k)-S^{-1}(p), \\
q \cdot t t \cdot \Gamma(k, p)= & T_{\mu \nu}^{1}\left[S^{-1}(p) \sigma_{\mu \nu}^{5}-\sigma_{\mu \nu}^{5} S^{-1}(k)\right] \\
& +t^{2} q \cdot \Gamma(k, p)+T_{\mu \nu}^{1} V_{\mu \nu}^{A}(k, p), \\
q \cdot t \gamma \cdot \Gamma(k, p)= & T_{\mu \nu}^{2}\left[S^{-1}(p) \sigma_{\mu \nu}^{5}-\sigma_{\mu \nu}^{5} S^{-1}(k)\right] \\
& +\gamma \cdot t q \cdot \Gamma(k, p)+T_{\mu \nu}^{2} V_{\mu \nu}^{A}(k, p) .
\end{aligned}
$$

I. Quark-gluon vertex: Solution of WGTIs

Define two projection tensors and contract them with the transverse WGTIs,

$$
T_{\mu \nu}^{1}=\frac{1}{2} \varepsilon_{\alpha \mu \nu \beta} t_{\alpha} q_{\beta} \mathbf{I}_{\mathrm{D}}, \quad T_{\mu \nu}^{2}=\frac{1}{2} \varepsilon_{\alpha \mu \nu \beta} \gamma_{\alpha} q_{\beta}
$$

one can decouple the WGTIs and obtain a group of equations for the vector vertex:

$$
\begin{aligned}
q_{\mu} i \Gamma_{\mu}(k, p)= & S^{-1}(k)-S^{-1}(p) \\
q \cdot t t \cdot \Gamma(k, p)= & T_{\mu \nu}^{1}\left[S^{-1}(p) \sigma_{\mu \nu}^{5}-\sigma_{\mu \nu}^{5} S^{-1}(k)\right] \\
& +t^{2} q \cdot \Gamma(k, p)+T_{\mu \nu}^{1} V_{\mu \nu}^{A}(k, p) \\
q \cdot t \gamma \cdot \Gamma(k, p)= & T_{\mu \nu}^{2}\left[S^{-1}(p) \sigma_{\mu \nu}^{5}-\sigma_{\mu \nu}^{5} S^{-1}(k)\right] \\
& +\gamma \cdot t q \cdot \Gamma(k, p)+T_{\mu \nu}^{2} V_{\mu \nu}^{A}(k, p) .
\end{aligned}
$$

$$
\Gamma_{\mu}^{\mathrm{Full}}(k, p)=\Gamma_{\mu}^{\mathrm{BC}}(k, p)+\Gamma_{\mu}^{\mathrm{T}}(k, p)+\Gamma_{\mu}^{\mathrm{FP}}(k, p) .
$$

It is a group of full-determinant linear equations.
A unique solution for the vector vertex is exposed:

I. Quark-gluon vertex: Solution of WGTIs

Define two projection tensors and contract them with the transverse WGTIs,

$$
T_{\mu \nu}^{1}=\frac{1}{2} \varepsilon_{\alpha \mu \nu \beta} t_{\alpha} q_{\beta} \mathbf{I}_{\mathrm{D}}, \quad T_{\mu \nu}^{2}=\frac{1}{2} \varepsilon_{\alpha \mu \nu \beta} \gamma_{\alpha} q_{\beta}
$$

one can decouple the WGTIs and obtain a group of equations for the vector vertex:

$$
\begin{aligned}
q_{\mu} i \Gamma_{\mu}(k, p)= & S^{-1}(k)-S^{-1}(p), \\
q \cdot t t \cdot \Gamma(k, p)= & T_{\mu \nu}^{1}\left[S^{-1}(p) \sigma_{\mu \nu}^{5}-\sigma_{\mu \nu}^{5} S^{-1}(k)\right] \\
& +t^{2} q \cdot \Gamma(k, p)+T_{\mu \nu}^{1} V_{\mu \nu}^{A}(k, p), \\
q \cdot t \gamma \cdot \Gamma(k, p)= & T_{\mu \nu}^{2}\left[S^{-1}(p) \sigma_{\mu \nu}^{5}-\sigma_{\mu \nu}^{5} S^{-1}(k)\right] \\
& +\gamma \cdot t q \cdot \Gamma(k, p)+T_{\mu \nu}^{2} V_{\mu \nu}^{A}(k, p) .
\end{aligned}
$$

$$
\Gamma_{\mu}^{\mathrm{Full}}(k, p)=\Gamma_{\mu}^{\mathrm{BC}}(k, p)+\Gamma_{\mu}^{\mathrm{T}}(k, p)+\Gamma_{\mu}^{\mathrm{FP}}(k, p)
$$

A unique solution for the vector vertex is exposed:

* The quark propagator contributes to the longitudinal and transverse parts. The DCSB-related terms are highlighted.

$$
\begin{aligned}
& \Gamma_{\mu}^{\mathrm{BC}}(k, p)=\gamma_{\mu} \Sigma_{A}+t_{\mu} t \frac{\Delta_{A}}{2}-i t_{\mu} \Delta_{B}, \\
& \Gamma_{\mu}^{\mathrm{T}}(k, p)=-\sigma_{\mu \nu} q_{\nu} \Delta_{B}+\gamma_{\mu}^{T} q^{2} \frac{\Delta_{A}}{2}-\left(\gamma_{\mu}^{T}[q, t]-2 t_{\mu}^{T} q\right) \frac{\Delta_{A}}{4} .
\end{aligned}
$$

$$
\begin{aligned}
& S(p)=\frac{1}{i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right)} \\
& \Sigma_{\phi}(x, y)=\frac{1}{2}[\phi(x)+\phi(y)], \\
& \Delta_{\phi}(x, y)=\frac{\phi(x)-\phi(y)}{x-y} . \\
& X_{\mu}^{T}=X_{\mu}-\frac{q \cdot X q_{\mu}}{q^{2}}
\end{aligned}
$$

* The unknown high-order terms only contribute to the transverse part, i.e., the longitudinal part has been completely determined by the quark propagator.

I. Quark-gluon vertex: Solution of WGTIs

Define two projection tensors and contract them with the transverse WGTIs,

$$
T_{\mu \nu}^{1}=\frac{1}{2} \varepsilon_{\alpha \mu \nu \beta} t_{\alpha} q_{\beta} \mathbf{I}_{\mathrm{D}}, \quad T_{\mu \nu}^{2}=\frac{1}{2} \varepsilon_{\alpha \mu \nu \beta} \gamma_{\alpha} q_{\beta}
$$

one can decouple the WGTIs and obtain a group of equations for the vector vertex:

$$
\begin{aligned}
q_{\mu} i \Gamma_{\mu}(k, p)= & S^{-1}(k)-S^{-1}(p), \\
q \cdot t t \cdot \Gamma(k, p)= & T_{\mu \nu}^{1}\left[S^{-1}(p) \sigma_{\mu \nu}^{5}-\sigma_{\mu \nu}^{5} S^{-1}(k)\right] \\
& +t^{2} q \cdot \Gamma(k, p)+T_{\mu \nu}^{1} V_{\mu \nu}^{A}(k, p), \\
q \cdot t \gamma \cdot \Gamma(k, p)= & T_{\mu \nu}^{2}\left[S^{-1}(p) \sigma_{\mu \nu}^{5}-\sigma_{\mu \nu}^{5} S^{-1}(k)\right] \\
& +\gamma \cdot t q \cdot \Gamma(k, p)+T_{\mu \nu}^{2} V_{\mu \nu}^{A}(k, p) .
\end{aligned}
$$

$$
\Gamma_{\mu}^{\mathrm{Full}}(k, p)=\Gamma_{\mu}^{\mathrm{BC}}(k, p)+\Gamma_{\mu}^{\mathrm{T}}(k, p)+\Gamma_{\mu}^{\mathrm{FP}}(k, p) .
$$

* The quark propagator contributes to the longitudinal and transverse parts. The DCSB-related terms are highlighted.

$$
\begin{aligned}
& \Gamma_{\mu}^{\mathrm{BC}}(k, p)=\gamma_{\mu} \Sigma_{A}+t_{\mu} t \frac{\Delta_{A}}{2}-i t_{\mu} \Delta_{B}, \\
& \Gamma_{\mu}^{\mathrm{T}}(k, p)=-\sigma_{\mu \nu} q_{\nu} \Delta_{B}+\gamma_{\mu}^{T} q^{2} \frac{\Delta_{A}}{2}-\left(\gamma_{\mu}^{T}[q, t]-2 t_{\mu}^{T} q\right) \frac{\Delta_{A}}{4} .
\end{aligned}
$$

$$
\begin{aligned}
& S(p)=\frac{1}{i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right)} \\
& \Sigma_{\phi}(x, y)=\frac{1}{2}[\phi(x)+\phi(y)], \\
& \Delta_{\phi}(x, y)=\frac{\phi(x)-\phi(y)}{x-y} . \\
& X_{\mu}^{T}=X_{\mu}-\frac{q \cdot X q_{\mu}}{q^{2}}
\end{aligned}
$$

* The unknown high-order terms only contribute to the transverse part, i.e., the longitudinal part has been completely determined by the quark propagator.
II. Scattering kernel: General structure

II. Scattering kernel: General structure

+ etc.

\uparrow The kernel has $4 \times 4 \times 4 \times 4=256$ independent Lorentz structures.
\uparrow It is extremely complicated and must be constrained by symmetries.

II. Scattering kernel: symmetries—color-singlet WGTIs

The color-singlet axial-vector and vector WGTIs are written as

$$
\begin{aligned}
P_{\mu} \Gamma_{5 \mu}(k, P)+2 i m \Gamma_{5}(k, P) & =S^{-1}\left(k_{+}\right) i \gamma_{5}+i \gamma_{5} S^{-1}\left(k_{-}\right), \\
i P_{\mu} \Gamma_{\mu}(k, P) & =S^{-1}\left(k_{+}\right)-S^{-1}\left(k_{-}\right) .
\end{aligned}
$$

The Bethe-Salpeter equation and the quark gap equation are written as

$$
\begin{aligned}
\Gamma_{\alpha \beta}^{H}(k, P) & =\gamma_{\alpha \beta}^{H}+\int_{q} \mathcal{K}\left(k_{ \pm}, q_{ \pm}\right)_{\alpha \alpha^{\prime}, \beta^{\prime} \beta}\left[S\left(q_{+}\right) \Gamma^{H}(q, P) S\left(q_{-}\right)\right]_{\alpha^{\prime} \beta^{\prime}}, \\
S^{-1}(k) & =S_{0}^{-1}(k)+\int_{q} D_{\mu \nu}(k-q) \gamma_{\mu} S(q) \Gamma_{\nu}(q, k),
\end{aligned}
$$

II. Scattering kernel: symmetries—color-singlet WGTIs

The color-singlet axial-vector and vector WGTIs are written as

$$
\begin{aligned}
P_{\mu} \Gamma_{5 \mu}(k, P)+2 i m \Gamma_{5}(k, P) & =S^{-1}\left(k_{+}\right) i \gamma_{5}+i \gamma_{5} S^{-1}\left(k_{-}\right), \\
i P_{\mu} \Gamma_{\mu}(k, P) & =S^{-1}\left(k_{+}\right)-S^{-1}\left(k_{-}\right) .
\end{aligned}
$$

The Bethe-Salpeter equation and the quark gap equation are written as

$$
\begin{aligned}
\Gamma_{\alpha \beta}^{H}(k, P) & =\gamma_{\alpha \beta}^{H}+\int_{q} \mathcal{K}\left(k_{ \pm}, q_{ \pm}\right)_{\alpha \alpha^{\prime}, \beta^{\prime} \beta}\left[S\left(q_{+}\right) \Gamma^{H}(q, P) S\left(q_{-}\right)\right]_{\alpha^{\prime} \beta^{\prime}} \\
S^{-1}(k) & =S_{0}^{-1}(k)+\int_{q} D_{\mu \nu}(k-q) \gamma_{\mu} S(q) \Gamma_{\nu}(q, k)
\end{aligned}
$$

II. Scattering kernel: symmetries—color-singlet WGTIs

The color-singlet axial-vector and vector WGTIs are written as

$$
\begin{aligned}
P_{\mu} \Gamma_{5 \mu}(k, P)+2 i m \Gamma_{5}(k, P) & =\left\lvert\, \begin{array}{l}
-1\left(k_{+}\right) i \gamma_{5}+i \gamma_{5} S^{-1}\left(k_{-}\right), \\
i P_{\mu} \Gamma_{\mu}(k, P)
\end{array}=S^{-1}\left(k_{+}\right)-S^{-1}\left(k_{-}\right) .\right.
\end{aligned}
$$

The Bethe-Salpeter equation and the quark gap equation are written as

$$
\begin{aligned}
\Gamma_{\alpha \beta}^{H}(k, P) & =\gamma_{\alpha \beta}^{H}+\int_{q} \mathcal{K}\left(k_{ \pm}, q_{ \pm}\right)_{\alpha \alpha^{\prime}, \beta^{\prime} \beta}\left[S\left(q_{+}\right) \Gamma^{H}(q, P) S\left(q_{-}\right)\right]_{\alpha^{\prime} \beta^{\prime}} \\
S^{-1}(k) & =S_{0}^{-1}(k)+\int_{q} D_{\mu \nu}(k-q) \gamma_{\mu} S(q) \Gamma_{\nu}(q, k)
\end{aligned}
$$

II. Scattering kernel: symmetries-color-singlet WGTIs

The color-singlet axial-vector and vector WGTIs are written as

$$
\begin{aligned}
P_{\mu} \Gamma_{5 \mu}(k, P)+2 i m \Gamma_{5}(k, P) & =\left\lvert\, \begin{array}{l}
-1 \\
S^{-1}\left(k_{+}\right) i \gamma_{5}+i \gamma_{5} S^{-1}\left(k_{-}\right), \\
i P_{\mu} \Gamma_{\mu}(k, P)
\end{array}=S^{-1}\left(k_{+}\right)-S^{-1}\left(k_{-}\right) .\right.
\end{aligned}
$$

The Bethe-Salpeter equation and the quark gap equation are written as

$$
\begin{aligned}
\Gamma_{\alpha \beta}^{H}(k, P) & =\gamma_{\alpha \beta}^{H}+\int_{q} \mathcal{K}\left(k_{ \pm}, q_{ \pm}\right)_{\alpha \alpha^{\prime}, \beta^{\prime} \beta}\left[S\left(q_{+}\right) \Gamma^{H}(q, P) S\left(q_{-}\right)\right]_{\alpha^{\prime} \beta^{\prime}} \\
S^{-1}(k) & =S_{0}^{-1}(k)+\int_{q} D_{\mu \nu}(k-q) \gamma_{\mu} S(q) \Gamma_{\nu}(q, k)
\end{aligned}
$$

The kernel satisfies the following WGTIs: quark propagator + quark-gluon vertex

$$
\begin{gathered}
\int_{q} \mathcal{K}_{\alpha \alpha^{\prime}, \beta^{\prime} \beta}\left\{S\left(q_{+}\right)\left[S^{-1}\left(q_{+}\right)-S^{-1}\left(q_{-}\right)\right] S\left(q_{-}\right)\right\}_{\alpha^{\prime} \beta^{\prime}}=\int_{q} D_{\mu \nu}(k-q) \gamma_{\mu}\left[S\left(q_{+}\right) \Gamma_{\nu}\left(q_{+}, k_{+}\right)-S\left(q_{-}\right) \Gamma_{\nu}\left(q_{-}, k_{-}\right)\right], \\
\int_{q} \mathcal{K}_{\alpha \alpha^{\prime}, \beta^{\prime} \beta}\left\{S\left(q_{+}\right)\left[S^{-1}\left(q_{+}\right) \gamma_{5}+\gamma_{5} S^{-1}\left(q_{-}\right)\right] S\left(q_{-}\right)\right\}_{\alpha^{\prime} \beta^{\prime}}=\int_{q} D_{\mu \nu}(k-q) \gamma_{\mu}\left[S\left(q_{+}\right) \Gamma_{\nu}\left(q_{+}, k_{+}\right) \gamma_{5}-\gamma_{5} S\left(q_{-}\right) \Gamma_{\nu}\left(q_{-}, k_{-}\right)\right] .
\end{gathered}
$$

II. Scattering kernel: Elements of quark gap equation

Assuming the scattering kernel has the following structure:

Ladder-like term

Symmetry-rescuing term

II. Scattering kernel: Elements of quark gap equation

Assuming the scattering kernel has the following structure:

Ladder-like term

Symmetry-rescuing term

Algebraic version of the WGTIs, which the scattering kernel satisfy, are written as

$$
\begin{aligned}
\Gamma_{\nu}^{+}-\Gamma_{\nu}^{-} & =\left(S_{+}^{-1}-S_{-}^{-1}\right) \mathcal{K}_{\nu}^{+}+\gamma_{5}\left(S_{+}^{-1}-S_{-}^{-1}\right) \gamma_{5} \mathcal{K}_{\nu}^{-}, \\
\Gamma_{\nu}^{+} \gamma_{5}+\gamma_{5} \Gamma_{\nu}^{-} & =\left(S_{+}^{-1} \gamma_{5}+\gamma_{5} S_{-}^{-1}\right) \mathcal{K}_{\nu}^{+}+\left(\gamma_{5} S_{+}^{-1}+S_{-}^{-1} \gamma_{5}\right) \mathcal{K}_{\nu}^{-} .
\end{aligned}
$$

II. Scattering kernel: Elements of quark gap equation

Assuming the scattering kernel has the following structure:

Ladder-like term

Symmetry-rescuing term

Algebraic version of the WGTIs, which the scattering kernel satisfy, are written as

$$
\begin{aligned}
\Gamma_{\nu}^{+}-\Gamma_{\nu}^{-} & =\left(S_{+}^{-1}-S_{-}^{-1}\right) \mathcal{K}_{\nu}^{+}+\gamma_{5}\left(S_{+}^{-1}-S_{-}^{-1}\right) \gamma_{5} \mathcal{K}_{\nu}^{-}, \\
\Gamma_{\nu}^{+} \gamma_{5}+\gamma_{5} \Gamma_{\nu}^{-} & =\left(S_{+}^{-1} \gamma_{5}+\gamma_{5} S_{-}^{-1}\right) \mathcal{K}_{\nu}^{+}+\left(\gamma_{5} S_{+}^{-1}+S_{-}^{-1} \gamma_{5}\right) \mathcal{K}_{\nu}^{-} .
\end{aligned}
$$

Eventually, the solution is straightforward:

$$
\mathcal{K}_{\nu}^{ \pm}=\left(2 B_{\Sigma} A_{\Delta}\right)^{-1}\left[\left(A_{\Delta} \mp B_{\Delta}\right) \Gamma_{\nu}^{\Sigma} \pm B_{\Sigma} \Gamma_{\nu}^{\Delta}\right] .
$$

$$
S(p)=\frac{1}{i \gamma \cdot p A\left(p^{2}\right)+B\left(p^{2}\right)}
$$

\downarrow The form of scattering kernel is simple.
\uparrow The kernel has no kinetic singularities.
\checkmark All channels share the same kernel.
$B_{\Sigma}=2 B_{+} \quad B_{\Delta}=B_{+}-B_{-}$
$A_{\Delta}=i\left(\gamma \cdot q_{+}\right) A_{+}-i\left(\gamma \cdot q_{-}\right) A_{-}$

II. Scattering kerneI: Meson cloud — higher-order correction

In Quantum Field theory (infinitely many degrees of freedom), high-order Green functions cannot be completely truncated by low-order ones (unclosed).

For example, meson cloud, e.g., pion cloud, can enter the scattering kernel:

A contribution of meson exchange should be involved in the kernel.

II. Scattering kernel: Meson cloud — higher-order correction

In Quantum Field theory (infinitely many degrees of freedom), high-order Green functions cannot be completely truncated by low-order ones (unclosed).

For example, meson cloud, e.g., pion cloud, can enter the scattering kernel:

A contribution of meson exchange should be involved in the kernel.

Accordingly, the WGTIs require that meson cloud must modify the quark propagator:

$$
\left\{\begin{array}{l}
\frac{\partial|k| A\left(k^{2}\right)}{\partial|k|}=1+\frac{1}{4} \int_{q}\left[k_{\mu}^{\|}\right]_{\beta \alpha} \mathcal{K}_{\alpha \alpha^{\prime}, \beta^{\prime} \beta}\left[\frac{\partial S(q)}{\partial q_{\mu}}\right]_{\alpha^{\prime} \beta^{\prime}} \\
B\left(k^{2}\right)=m+\frac{1}{4} \int_{q}\left[\gamma_{5}\right]_{\beta \alpha} \mathcal{K}_{\alpha \alpha^{\prime}, \beta^{\prime} \beta}\left[\gamma_{5} \sigma_{B}\left(q^{2}\right)\right]_{\alpha^{\prime} \beta^{\prime}},
\end{array}\right.
$$

Ansatz and application: ground and radially excited mesons

Let the quark-gluon vertex includes both longitudinal and transverse parts:

$$
\Gamma_{\mu}(p, q)=\Gamma_{\mu}^{\mathrm{BC}}(p, q)+\Gamma_{\mu}^{\mathrm{T}}(p, q) \quad \Gamma_{\mu}^{\mathrm{T}}(p, q)=\eta \Delta_{B} \tau_{\mu}^{5}+\xi \Delta_{B} \tau_{\mu}^{8}+4(\eta+\xi) \Delta_{A} \tau_{\mu}^{4} \quad \begin{aligned}
& \tau_{\mu}^{4}=l_{\mu}^{\mathrm{T}} \gamma \cdot k+i \gamma_{\mu}^{\mathrm{T}} \sigma_{\nu \rho} l_{\nu} k_{\rho}, \\
& \tau_{\mu}^{5}=\sigma_{\mu \nu} k_{\nu}, \\
& \tau_{\mu}^{8}=3 l_{\mu}^{\mathrm{T}} \sigma_{\nu \rho} l_{\nu} k_{\rho} /\left(l^{\mathrm{T}} \cdot l^{\mathrm{T}}\right) .
\end{aligned}
$$

- The longitudinal part is the Ball-Chiu vertex-an exact piece from symmetries.
- The transverse part is the Anomalous Chromomagnetic Moment (ACM) vertex.

To generate the quark mass scale which is comparable to that of LQCD, the coupling strength can be so small that the rainbow-ladder approximation has NO DCSB at all.

Ansatz and application: ground and radially excited mesons

The correct mass ordering:

$$
m_{\rho^{\prime}}>m_{\pi^{\prime}}>m_{a_{1}}>m_{\sigma}>m_{\rho}>m_{\pi}
$$

	$-\langle\bar{q} q\rangle_{0}^{1 / 3}$	f_{π}	m_{ρ}	m_{σ}	$m_{b_{1}}$	$m_{a_{1}}$	$m_{\pi^{\prime}}$	$m_{\rho^{\prime}}$	$m_{b_{1}^{\prime}}$
this work	0.228	0.095	0.83	0.86	1.17	1.23	1.34	1.43	1.54
PDG	-	0.093	0.78	0.50	1.24	1.26	1.30	1.45	-

TABLE I: The fitted spectrum and its comparison with PDG data (Full vertex, $(D \omega)^{1 / 3}=0.492 \mathrm{GeV}, \omega=0.55 \mathrm{GeV}$, $\eta=0.35$ and $\xi=1.30$, in the chiral limit where pion is always massless).

Summary

\downarrow Based on WGTIs, a systematic and self-consistent method to construct the quarkgluon vertex and the scattering kernel beyond the simplest approximation is proposed;
\downarrow A demonstration applying the method to light meson spectroscopy, including ground and radially excited mesons, is presented.

Summary

Based on WGTIs, a systematic and self-consistent method to construct the quarkgluon vertex and the scattering kernel beyond the simplest approximation is proposed;
\downarrow A demonstration applying the method to light meson spectroscopy, including ground and radially excited mesons, is presented.

Outlook

- With the sophisticated method to solve the DSEs, we can push the DSE approach to a much wider range of applications in hadron physics, e.g., baryons.
- Hopefully, after more and more successful applications are presented, the DSE approach may provide a new path to understand QCD.

Appendices

Gluon propagator: Dynamically massive gluon
\uparrow In Landau gauge (a fixed point of the renormalization group):

$$
g^{2} D_{\mu \nu}(k)=\mathcal{G}\left(k^{2}\right)\left(\delta_{\mu \nu}-\frac{k_{\mu} k_{\nu}}{k^{2}}\right)
$$

$$
\begin{gathered}
\mathcal{G}\left(k^{2}\right) \approx \frac{4 \pi \alpha_{R L}\left(k^{2}\right)}{k^{2}+m_{g}^{2}\left(k^{2}\right)}, \\
m_{g}^{2}\left(k^{2}\right)=\frac{M_{g}^{4}}{M_{g}^{2}+k^{2}},
\end{gathered}
$$

O. Oliveira et. al., J.Phys. G38, 045003 (2011)

Scattering kernel: Goldstone theorem in terms of Green functions

In the chiral limit, the color-singlet axial-vector WGTI (chiral symmetry) is written as

$$
P_{\mu} \Gamma_{5 \mu}(k, P)=S^{-1}\left(k+\frac{P}{2}\right) i \gamma_{5}+i \gamma_{5} S^{-1}\left(k-\frac{P}{2}\right)
$$

Scattering kernel: Goldstone theorem in terms of Green functions

In the chiral limit, the color-singlet axial-vector WGTI (chiral symmetry) is written as

$$
P_{\mu} \Gamma_{5 \mu}(k, P)=S^{-1}\left(k+\frac{P}{2}\right) i \gamma_{5}+i \gamma_{5} S^{-1}\left(k-\frac{P}{2}\right)
$$

Assuming DCSB, i.e., the mass function is generated, we have the following identity

$$
\lim _{P \rightarrow 0} P_{\mu} \Gamma_{5 \mu}(k, P)=2 i \gamma_{5} B\left(k^{2}\right) \neq 0
$$

The axial-vector vertex involves a pseudo scalar pole as

$$
\Gamma_{5 \mu}(k, 0) \sim \frac{2 i \gamma_{5} f_{\pi} E_{\pi}\left(k^{2}\right) P_{\mu}}{P^{2}} \propto \frac{P_{\mu}}{P^{2}} \quad f_{\pi} E_{\pi}\left(k^{2}\right)=B\left(k^{2}\right)
$$

Scattering kernel: Goldstone theorem in terms of Green functions

In the chiral limit, the color-singlet axial-vector WGTI (chiral symmetry) is written as

$$
P_{\mu} \Gamma_{5 \mu}(k, P)=S^{-1}\left(k+\frac{P}{2}\right) i \gamma_{5}+i \gamma_{5} S^{-1}\left(k-\frac{P}{2}\right)
$$

Assuming DCSB, i.e., the mass function is generated, we have the following identity

$$
\lim _{P \rightarrow 0} P_{\mu} \Gamma_{5 \mu}(k, P)=2 i \gamma_{5} B\left(k^{2}\right) \neq 0
$$

The axial-vector vertex involves a pseudo scalar pole as

$$
\Gamma_{5 \mu}(k, 0) \sim \frac{2 i \gamma_{5} f_{\pi} E_{\pi}\left(k^{2}\right) P_{\mu}}{P^{2}} \propto \frac{P_{\mu}}{P^{2}} \quad f_{\pi} E_{\pi}\left(k^{2}\right)=B\left(k^{2}\right)
$$

Assuming there is a radially excited pion, its decay constant vanishes

$$
\lim _{P^{2} \rightarrow M_{\pi_{n}}^{2}} \Gamma_{5 \mu}(k, P) \sim \frac{2 i \gamma_{5} f_{\pi_{n}} E_{\pi_{n}}(k, P) P_{\mu}}{P^{2}+M_{\pi_{n}}^{2}}<\infty \quad f_{\pi_{n}}=0
$$

Scattering kernel: Goldstone theorem in terms of Green functions

In the chiral limit, the color-singlet axial-vector WGTI (chiral symmetry) is written as

$$
P_{\mu} \Gamma_{5 \mu}(k, P)=S^{-1}\left(k+\frac{P}{2}\right) i \gamma_{5}+i \gamma_{5} S^{-1}\left(k-\frac{P}{2}\right)
$$

Assuming DCSB, i.e., the mass function is generated, we have the following identity

$$
\lim _{P \rightarrow 0} P_{\mu} \Gamma_{5 \mu}(k, P)=2 i \gamma_{5} B\left(k^{2}\right) \neq 0
$$

The axial-vector vertex involves a pseudo scalar pole as

$$
\Gamma_{5 \mu}(k, 0) \sim \frac{2 i \gamma_{5} f_{\pi} E_{\pi}\left(k^{2}\right) P_{\mu}}{P^{2}} \propto \frac{P_{\mu}}{P^{2}} \quad f_{\pi} E_{\pi}\left(k^{2}\right)=B\left(k^{2}\right)
$$

Assuming there is a radially excited pion, its decay constant vanishes

$$
\lim _{P^{2} \rightarrow M_{\pi_{n}}^{2}} \Gamma_{5 \mu}(k, P) \sim \frac{2 i \gamma_{5} f_{\pi_{n}} E_{\pi_{n}}(k, P) P_{\mu}}{P^{2}+M_{\pi_{n}}^{2}}<\infty \quad f_{\pi_{n}}=0
$$

DCSB means much more than massless pseudo-scalar meson.

