

LIGHT MESON DECAYS FROM PHOTON-INDUCED REACTIONS WITH CLAS

3 June 2016 14th International Workshop on Meson Production, Properties and Interaction

> Michael C. Kunkel IKP-1 <u>On behalf of the CLAS Collaboration and LMD group</u>

CEBAF Large Acceptance Spectrometer (CLAS)

The g11 and g12 experiments close JULICH

g11	g12
γр→рХ	_{γр→рХ}
60 - 65 nA <mark>4.023</mark> GeV e ⁻ beam	60 - 65 nA <mark>5.714</mark> GeV e ⁻ beam
<mark>0.803 <</mark> Eγ < <mark>3.815</mark>	1.142 < Eγ < 5.425
40 cm (2 cm radius) liquid H ₂ target	40 cm (2 cm radius) liquid H ₂ target
placed at CLAS center	placed -90cm from CLAS center
Trigger required at least two charged tracks in different sectors	Trigger required at least two charged tracks in different sectors for Eγ > 3.6
20x10 ⁹ productions triggers as 21	26x10 ⁹ productions triggers as 128
TB of raw data	TB of raw data
	Cherenkov Counters and Electromagnetic Calorimeter in trigger for entire Ey range

CLAS Light Meson Decay (LMD) Program

Meson Decay	Physics	Meson Decay	Physics
<i>π</i> ⁰→e⁺e⁻γ	Heavy photon upper limit	η(')→ππ⁺γ	Box anomaly
<i>η('</i>)→e⁺e⁻γ	Transition Form Factor	$ω \rightarrow π π^* γ$	<i>Upper limit branching ratio <3.6x10⁻³</i>
<i>ω</i> → <i>π</i> ⁰ e ⁺ e ⁻	Transition Form Factor	<i>η</i> , ω, Φ →π ⁻ π ⁺ π ⁰	Dalitz plot analysis
<i>η(')</i> →π⁰e+e-	C violation	η'→ππ+η	Dalitz plot analysis/meson mixing
<i>η(')→π</i> ⁻ π ⁺ e ⁺ e ⁻	CP violation	φ→ππ+η	G-parity violation

Box Anomaly from $\eta(') \rightarrow \pi^- \pi^+ \gamma$

N. G. Mbianda, M. Amaryan;

Old Dominion University

Motivation:

 The 2 photon decay of π⁰, η, η' →γγ proceed via the triangle or axial anomaly. In contrast, radiative decays of η, η' →π⁻π⁺γ proceed via the box anomaly.

$$\frac{d\Gamma(\eta \to \pi^+ \pi^- \gamma)}{ds_{\pi\pi}} = |AP(s_{\pi\pi})F_V(s_{\pi\pi})|^2 \Gamma_0(s_{\pi\pi})$$

• Radiative test the contribution of the box anomaly, including pion FSI. FSI occur for finite quark mass.

CLAS preliminary results comparison

Dalitz Plot of $\eta' \rightarrow \pi^-\pi^+\eta$

S. Ghosh, A. Roy;

IIT

Motivation:

- Dalitz plot of η'→π⁻π⁺η provides kinematic information of the decay, enabling the studying of low energy dynamics of QCD.
- The η'→π⁻π⁺η decay has a low Q-value due to relatively heavy decay products, thus helping us to test and limit the effective chiral Lagrangian theory.

Member of the Helmholtz Association

$\eta' \rightarrow \pi^- \pi^+ \eta$ from CLAS g12 data

Missing mass of $p\pi\pi^+$ for events where $M_{x}(p)=0.958\pm0.015 \text{ GeV}$

Missing mass of p for events where $M_{x}(p\pi^{-}\pi^{+})=0.5\pm0.015 \text{ GeV}$

Currently finishing analysis See Parallel Session A3 1550 by Sudeep Ghosh for detailed analysis

 $\times 10^3$

Transition Form Factors

J. Ritman, M. C. Kunkel, S. Schadmand;

Institut für Kernphysik, Forschungszentrum Jülich

Motivation:

- Transition form factors provides insight into the meson charge radius, $\!\langle r \rangle_{\!.}$
- Ratio of η/η' form factors provides information on η/η' mixing angle.
- For $\boldsymbol{\omega}$ there is a discrepancy between the measurement and the VMD model.
- The knowledge of the P(π^0 , η , η') form factor is needed for the interpretation of the g-2 experiment.

 $\eta,\,\omega$, η' Yield in CLAS g12

Goal: Measuring transition form factors

$\boldsymbol{\omega}$ Transition Form Factor in CLAS

CLAS data yield from $\gamma p \rightarrow p X$ wield $M^2_x(pe^+e^-) = M^2_{\pi 0} \pm 0.01 \text{ GeV}^2$

CLAS data yield from $\gamma p \rightarrow p e^+ e^- X$ with $M_x(p) = M_\omega \pm 0.031 \text{ GeV}$

ω Transition Form Factor in CLAS

Recent results the ω transition form factor with errors. Image Source: S. P. Schneider et al., Phys. Rev. D86, p. 054013 (2012)

η' Branching Ratio

BESIII $\Gamma(\eta' \rightarrow \gamma e + e^{-})/\Gamma(\eta' \rightarrow \gamma \gamma)$ (2.13±0.09(stat.)±0.07(sys.))×10-2 from 864 events [1]

CLAS preliminary BR $\Gamma(\eta' \rightarrow \gamma e + e^{-})/\Gamma(\eta' \rightarrow \gamma \gamma)$ (2.63±0.3(stat.))×10-2 from 172 events First estimate from cut-based analysis

Current status of η' charge radius

Current BESIII and CLAS data sets do not have enough statistics to determine which theoretical model fits the $\eta' \rightarrow$ charge radius			
	$\langle \mathrm{r} \rangle$	Number of events	
CLAS (η′→γe+e−)	TBD	172	
BESIII (η′→γe+e−)	(M) 1.60 ± 0.17(stat) ± 0.08(sys) GeV ^{-2 [1]}	864	
CELLO (η′→γμ+μ−)	(M) 1.7 ± 0.4 GeV ⁻² ^[2]	75	
Dispersion	(P) 1.53 ^{+0.15} -0.08 GeV ⁻²		

Dispersion	(P) 1.53 ^{+0.15} -0.08 GeV ⁻²	
ChPT	(P) 1.6 GeV ⁻²	
VMD	(P) 1.45 GeV ⁻²	

Current statistical error cannot discern the correct theoretical model

[1]M. Ablikim et al., Phys.Rev. D92 (2015) 012001 [2]R. I. Dzhelyadi et al., Phys. Lett. B 88, 379 (1979)

Future CLAS e+e- pair physics

Electromagnetic structure of mesons and baryons. Currently we are benchmarking the $\eta' \rightarrow \gamma e+e-$ decay. Here is a list of initial physics to be studied

Meson	Baryon	
η′→γe+e-	∆→Ne+e-	
$\omega \rightarrow \pi^0 e + e^-$	Λ→ne+e− Λ(1520)→Λe+e−	
Ф→ηе+е-		
J/ψ→π ⁰ e+e-	$\Sigma^0 \rightarrow \Lambda e + e^-$ $\Sigma^+ \rightarrow pe + e^-$	
CLAS $\xi(e^+e^-)/\xi(\pi+\pi-)$ can be range $10^5 - 10^{12}$		

CLAS e^+e^- efficiency (ϵ) range 1 - 10⁻²

CEBAF Large Acceptance Spectrometer (CLAS)

Future CLAS η' Measurement

ep→pη'(e')→pe⁺e⁻γ(e')

Possible Contamination

Contamination from wrong $e^{-} \lesssim 1/100$

Future CLAS η' Acceptance

Acceptance appears mostly independent on input model

Future CLAS η' Rates

The rate for mesons in electro-production where the scattered electron is left undetected (W=1.9-2.7 GeV) is ~ 80 kHz [1]

Within 80 days of beam-time, CLAS12 can accumulate ~30,000 events. 35 times more than current measurement.

[1]M. Sargsyan et al. CLAS-NOTE 90-007. Technical report, CLAS Technical Note, 1990

Possible future CLAS η' results

Within 100 days of beam-time CLAS can measure the η ' transition form factor with a statistical uncertainty ~0.5%

- CLAS LMD: experimental data analysis of light meson decays
- Current statistics of CLAS data enables precise measurements of light meson decays including
 - $\pi^-\pi^+$ FSI within the anomalous decay $\eta(') \rightarrow \pi^-\pi^+\gamma$
 - Dalitz plot analysis
 - Transition form factors of pseudoscalar and vector mesons
- Future CLAS data:
 - Hadron transition form factors.
 - Branching ratios of meson conversion decays.
 - Fundamental properties of hadrons

BACKUPS

Dalitz Plot of $\eta \rightarrow \pi^- \pi^+ \pi^0$

IKP: D. Lersch

JPAC: A. Szczepaniak, et. al.

Motivation:

• $\eta \rightarrow \pi^- \pi^+ \pi^0$ is sensitive to isospin breaking, which in QCD originates from the mass difference between the up and down quarks.

- The isobar model assumes quasi 2-body decay and is insufficient for some channels
- It is important to construct amplitudes which contain all the known physics such as 3-body interactions, coupled channel, unitarity, analyticity, etc.
- The $\eta \rightarrow \pi^- \pi^+ \pi^0$ analysis is building in the three-body interaction (unitarity and analyticity) as a first step for future experimental analysis tools.

Dalitz Plot with CLAS g12 data

No resonances as expected

Dalitz Plot with CLAS g12 data

No resonances as expected

Dalitz Plot with g12 data

Points: CLAS data Solid area: Model normalized to KLOE data

JPAC model fits wells to CLAS data

BACKUPS

[1]F.Stollenwerk et al., Phys. Lett. B707:184-190, 2012 [2]Phys.Lett. B718 (2013) 910-914

30

Experimental result from CRYSTAL BARREL at LEAR

[1]A. Abele et al. Phys.Lett. B402, 195 (1997).

CLAS Uncorrected Data

ω Transition Form Factor

η Transition Form Factors

