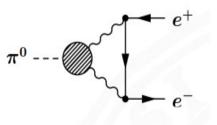
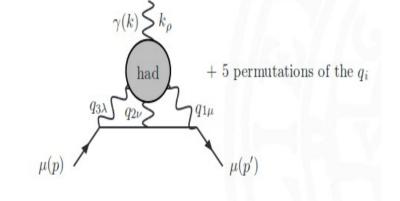
Electromagnetic transition form factor of the n meson with WASA-at-COSY

(for the WASA-at-COSY collaboration)

Indian Institute of Technology Indore


Motivation

Intrinsic structure of hadrons


form factors

Vector meson dominance

background for physics beyond standard model rare pion decay $\pi^0 \rightarrow e^+e^-$

g-2 of muon

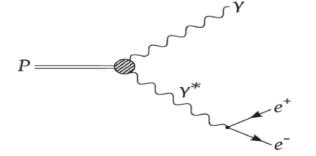
03/06/2016

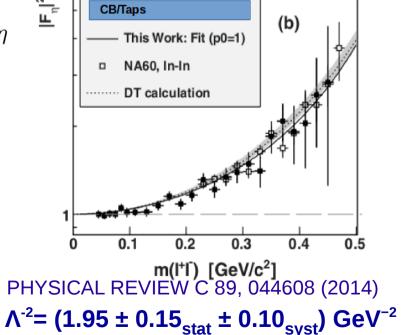
Transition Form Factor

Transition Form Factor F (q²) of the η meson is observed through the rare electromagnetic decay $\eta \rightarrow y e^+ e^-$ (BR $\rightarrow 6.9 \times 10^{-3}$).

$$\frac{d\Gamma(\eta \rightarrow \gamma e^+ e^-)}{dq^2 \cdot \Gamma(\eta \rightarrow \gamma \gamma)} = \frac{2\alpha}{3\pi} \left[1 - \frac{4m_e^2}{q^2} \right]^{1/2} \left[1 + \frac{2m_e^2}{q^2} \right] \frac{1}{q^2} \left[1 - \frac{q^2}{m_\eta^2} \right]^3 |F_\eta(q^2)|^2$$

$$F(q^2) = \frac{1}{1 - \frac{q^2}{\Lambda^2}} \approx 1 + \frac{q^2}{\Lambda^2} \qquad \left| \frac{dF(q^2)}{dq^2} \right|_{q^2 = 0} = \frac{1}{\Lambda^2} = b_\eta \qquad \text{integration} \qquad \text{(b)}$$

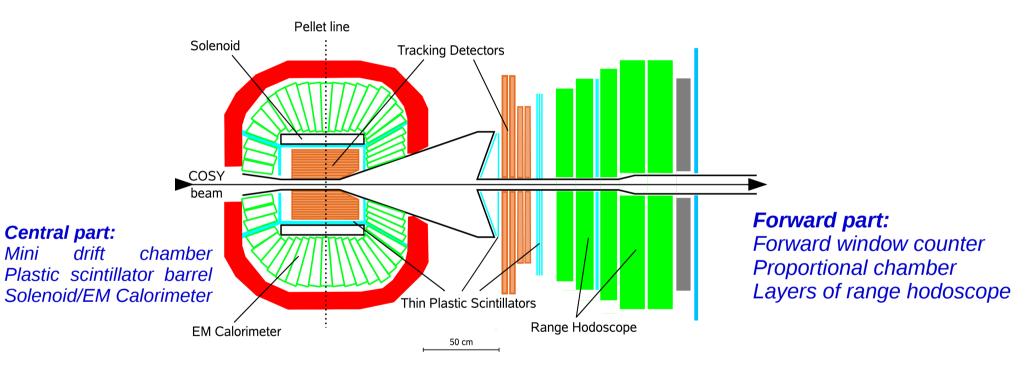

$$I = \frac{1}{1 - \frac{q^2}{\Lambda^2}} \approx 1 + \frac{q^2}{\Lambda^2} \qquad \left| \frac{dF(q^2)}{dq^2} \right|_{q^2 = 0} = \frac{1}{\Lambda^2} = b_\eta \qquad \text{integration} \qquad \text{(b)}$$


$$I = \frac{1}{1 - \frac{q^2}{\Lambda^2}} \approx 1 + \frac{q^2}{\Lambda^2} \qquad \left| \frac{dF(q^2)}{dq^2} \right|_{q^2 = 0} = \frac{1}{\Lambda^2} = b_\eta \qquad \text{integration} \qquad \text{(b)}$$

$$I = \frac{1}{1 - \frac{q^2}{\Lambda^2}} \approx 1 + \frac{q^2}{\Lambda^2} \qquad \left| \frac{dF(q^2)}{dq^2} \right|_{q^2 = 0} = \frac{1}{\Lambda^2} = b_\eta \qquad \text{integration} \qquad \text{(b)}$$

$$I = \frac{1}{1 - \frac{q^2}{\Lambda^2}} \approx 1 + \frac{q^2}{\Lambda^2} \qquad \left| \frac{dF(q^2)}{dq^2} \right|_{q^2 = 0} = \frac{1}{\Lambda^2} = b_\eta \qquad \text{integration} \qquad \text{(b)}$$

$$I = \frac{1}{1 - \frac{q^2}{\Lambda^2}} = \frac{1}{\Lambda^2} + \frac{1}{1 - \frac{q^2}{\Lambda^2}} = \frac{1}{1 - \frac{q^2}$$



WASA-at-COSY: high statistics dataset

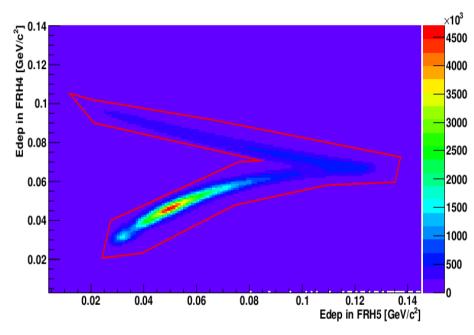
WASA (Wide Angle Shower **Apparatus) set up**

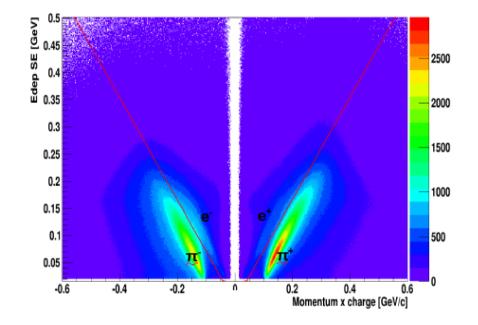
Reaction: $p + p \rightarrow p + p + \eta(e^+ e^- y)$ at beam energy 1.4 GeV

Fixed target experiment, pellet target, 22.9 % of 4л acceptance

Recoil protons are detected with the forward detector

e⁺e⁻ are detected with the mini drift chamber in the magnetic field of solenoid

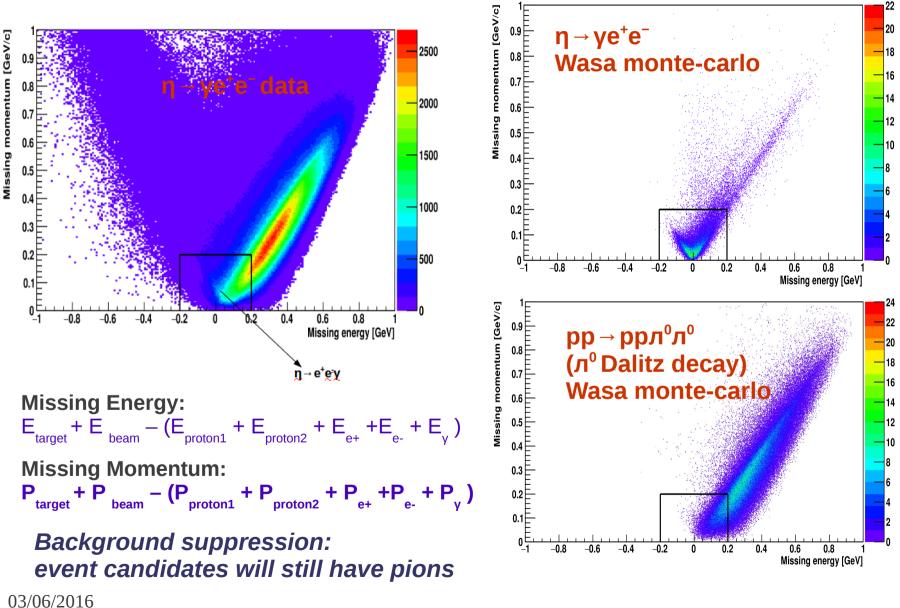

Photons are detected in the calorimeter


03/06/2016

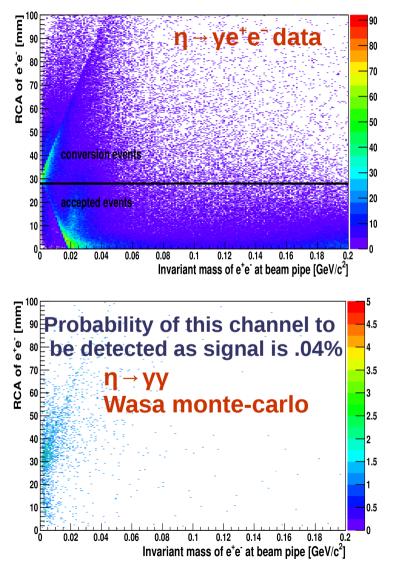
Mini

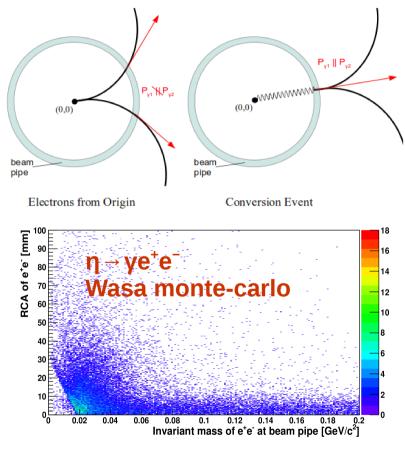
Data Analysis: Particle Identification

 $p + p \rightarrow p + p + \eta(e^+ e^- y)$

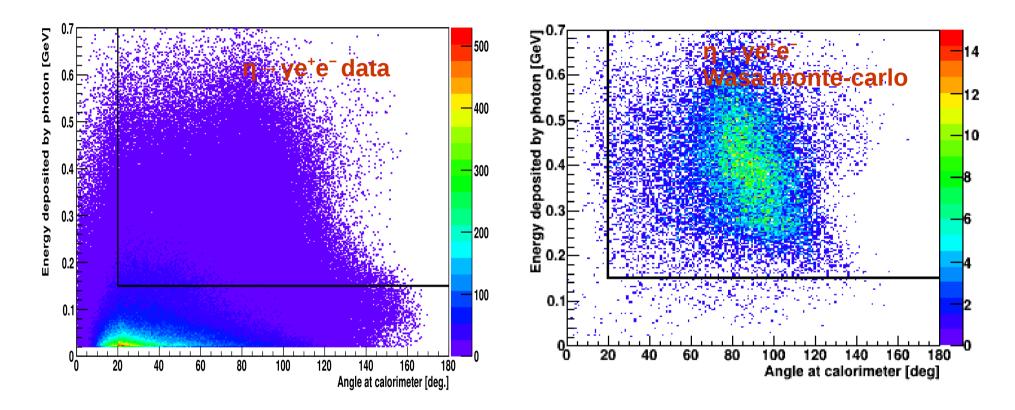


- Protons are identified in the forward part of the detector
- Deposit energy in forward range hodoscope layers


- Different types of particles leave distinct bands
- Momentum times charge of the particle is plotted against the energy deposited by particle in the calorimeter

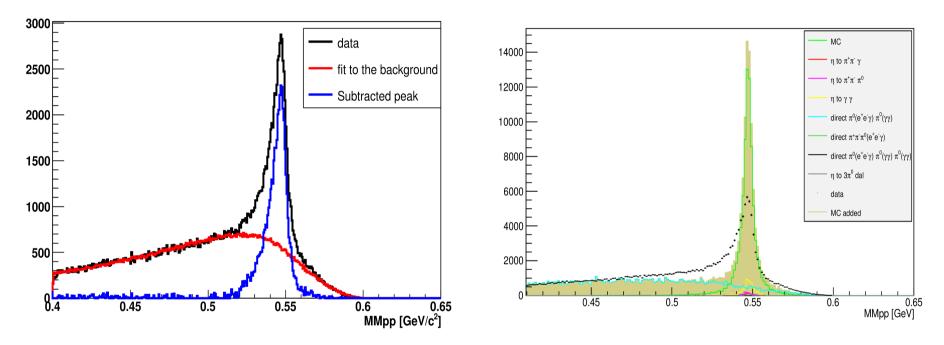

Energy-momentum balance

6


Conversion background

- Photons interact with beam-pipe material and convert into e⁺e⁻ pairs
- **a** $\eta \rightarrow yy$ contributes
- Invariant mass at beam pipe plotted against the radius of closest approach of e⁺e⁻

Split off background

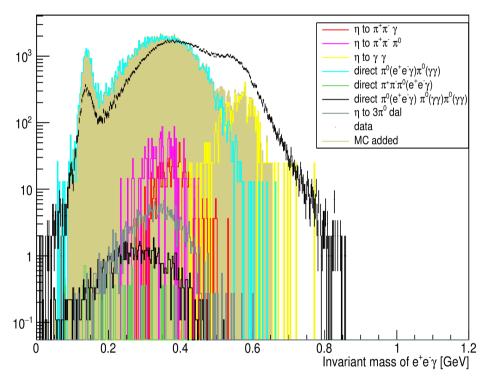


- Photons and electrons make electromagnetic shower in the calorimeter
- Split-offs are discontinuous showers
- We look at the energy deposited in the calorimeter v/s the angle between photon candidate and closest charged track

split offs are located at low energy and small angle

03/06/2016

Missing mass of η meson

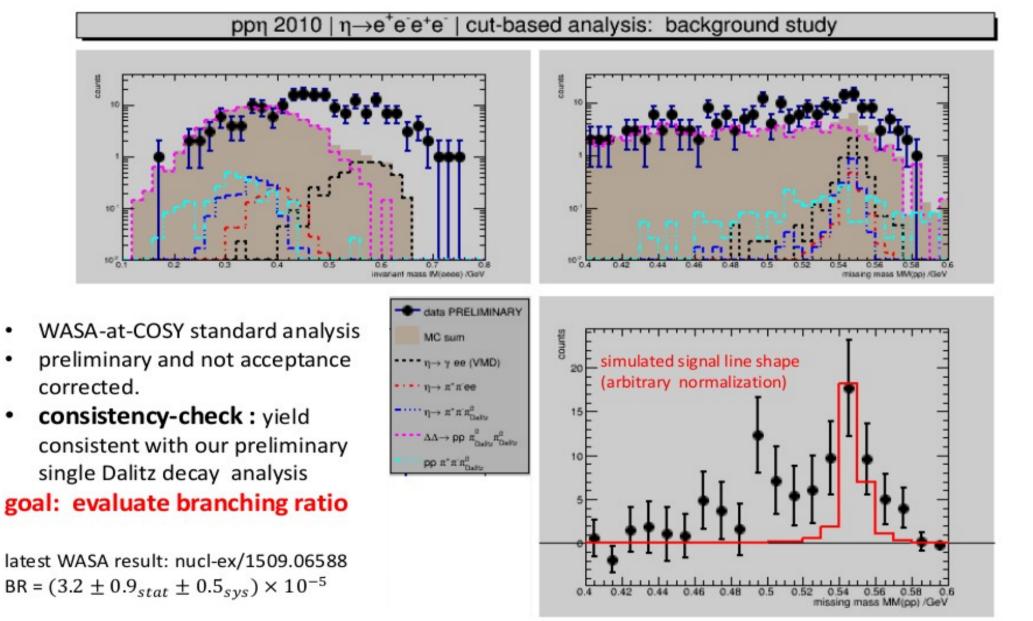


Main background source is $pp \rightarrow pp\pi^{0}\pi^{0}(\pi^{0}Dalitz decay)$

- Background fit: pol4 × MC (pp $\rightarrow pp\pi^{0}\pi^{0}$ (π^{0} Dalitz decay)) excluding the peak region
- produced η : 10⁸
- approximately 43k η decays

Background study: cocktail plots

preliminary and not acceptance corrected


- Direct and competing decays
- Phase space simulations (for now)
- Δ - Δ , $\pi^+\pi^-$ orrelations have to be implemented

Normalization of background channels is done relative to each other and scaled with data 03/06/2016

Background channel	Cross- section/ Branching ratio	Probability of being detected as signal (%)
рр → ррл⁰(е⁺е-)л⁰(үү)	324 µb	.069
рр→ррл⁺л⁻л⁰(е⁺е⁻γ)	4.6 µb	.00041
рр → ррл⁰(е⁺е⁻ү) л⁰(үү) л⁰(үү)	1.34 µb	.011
$\eta \to \pi^+ \pi^- \pi^0$	22.6 %	.0009
$\eta \to \pi^+ \pi^- \gamma$	4.68 %	.0287
$\eta \to \gamma \gamma$	39 %	.0032
$η \rightarrow π^{0}(\gamma\gamma) \pi^{0}(\gamma\gamma) \pi^{0}(e^{+}e^{-}\gamma)$	32 %	.122

reaching for the double Dalitz decay

Susan Schadmand

٠

Summary

 $\eta \to \gamma e^+ e^-$

- Main source of background is $pp \rightarrow pp \pi^0 \pi^0 (\pi^0 \rightarrow e^+ e^- \gamma)$
- Detailed study of background channels is ongoing

$$\eta \rightarrow e^+ e^- e^+ e^-$$

Branching ratio

Outlook

As a different approach, kinematic fit to suppress background
 Transition form factor of η