Analysis of the production mechanism of $p+p \rightarrow p+K+\Lambda$ using PWA

Robert Münzer
Excellence Cluster - Origin of the Universe - Technische Universität München
Institut für Kernphysik - Goethe Universität Frankfurt
CERN

Outline

- Introduction - Strangeness Production
- Experimental Data
- Method of Partial Wave Analysis
- Results of Combined Analysis
- Excitation Function
- Scattering Length
- Summary
- Outlook

Strangeness Production

Detailed Understanding required:

- Transport Model
- Production of Exotic

One - Boson Exchange Modell

Strangeness Production

Strangeness Production

Resonance	J^{P}	Mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	$\Gamma\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$
$\mathrm{N}^{*}(1650)$	$1 / 2^{-}$	1.655	0.150
$\mathrm{~N}^{*}(1710)$	$1 / 2^{+}$	1.710	0.100
$\mathrm{~N}^{*}(1720)$	$3 / 2^{+}$	1.720	0.250
$\mathrm{~N}^{*}(1875)$	$3 / 2^{-}$	1.875	0.220
$\mathrm{~N}^{*}(1880)$	$1 / 2^{+}$	1.870	0.235
$\mathrm{~N}^{*}(1895)$	$1 / 2^{-}$	2.090	0.090
$\mathrm{~N}^{*}(1900)$	$3 / 2^{+}$	1.900	0.0250

Strangeness Production

Meson 2016 - Kraк.

Strangeness Production

LO - NLO Calculations

J. Haidenbauer et al., Nucl. Phys. A915, 24 (2013)

Strangeness Production

S.Abd El-Samad, Eur.Phys.J A49(2013)

At Threshold : $2130 \mathrm{MeVc}^{-2}$

Strangeness Production

FINUDA

G. Agakishiev,Phys.Lett. B742 (2015) 242-248

Strangeness Production

Strangeness Production

Experimental Data

Data Sets

Experiment	$E_{B}[\mathrm{GeV}]$	Statistics	Reference
DISTO	2.15	121k	M. Maggiora et al. Nucl Phys. A835, 43 (2010) M.Maggiora, Nucl Phys. A691, 329 (2001)
COSY-TOF	2.16	43k	M. Roeder et al., Eur. Phys..J. A49, 157 (2013) S. Jowzaee et al., Eur. Phys. J. A52, 7 (2016)
DISTO	2.5	304k	M. Maggiora et al. Nucl Phys. A835, 43 (2010) M.Maggiora, Nucl Phys. A691, 329 (2001)
DISTO	2.85	424k	M. Maggiora et al. Nucl Phys. A835, 43 (2010) M.Maggiora, Nucl Phys. A691, 329 (2001) F. Balestra et al. , Phys.Rev.Lett.83. 1534 (1999)
FOPI	3.1	903	R. Münzer, Hyp. Int., 233,1-3,159-166 (2015)
HADES	3.5	21k	G. Agakishiev,Phys.Lett. 8742 (2015) 242-248

The FOPI Experiment

SIS18 GSI Darmstadt

Beam Energy: 3.1 GeV

- Fixed-target Setup
- Full azimuthal coverage, $5^{\circ}-110^{\circ}$ in polar angle
- Momentum resolution $\approx 7 \%-15 \%$
- Particle identification via $\mathrm{dE} / \mathrm{dx}$ \& ToF

Trigger Detector - $\mathrm{Si} \wedge \mathrm{ViO}$:
Λ - Enhancement: $\quad 14.1 \pm 7.9(\text { stat })_{-0.6}^{+4.3}$

The HADES experiment

High Acceptance Di-electron Spectrometer GSI, Darmstadt

Beam Energy: 3.5 GeV

- Fixed-target Setup
- Full azimuthal coverage, $15^{\circ}-185^{\circ}$ in polar angle
- Momentum resolution $\approx 1 \%-5 \%$
- Particle identification via dE/dx \& ToF

```
HADES Coll. (G. Agakishiev et al.),
Eur. Phys. J. A41 (2009)
```


COSY-TOF Spectrometer

Acceptance: $1^{\circ}-60^{\circ}$ (polar), 2π (azimuthal)

Sec. Vertex: $\sigma_{x, y}<0.5 \mathrm{~mm}, \sigma_{z}<2.5 \mathrm{~mm}$
Momentum resolution $\approx 1 \%-1.5 \%$

$$
\sigma_{M M(p K)}=1.5 \mathrm{MeV} / \mathrm{c}^{2}
$$

DISTO Spectrometer

Acceptance: $23^{\circ}-43^{\circ}$ (polar), 2π (azimuthal)

$$
\begin{gathered}
\sigma_{p}=5 \% \\
\sigma_{M M(p K)}=30 \mathrm{MeV} / \mathrm{c}^{2}
\end{gathered}
$$

Partial Wave Analysis

Bonn-Gatchina PWA Framework

A. Sarantsev et.al., Eur. Phys J A 252005

Cross-section Decomposition

$$
d \sigma=\frac{(2 \pi)^{4}|A|^{2}}{4|k| \sqrt{s}} d \phi\left(P, q_{1}, q_{2}, q_{3}\right), \quad P=k_{1}+k_{2}
$$

A : reaction amplitude $\mathrm{A} \propto A \propto A_{t r}^{\alpha}(\mathrm{s}) \quad$ (Transition amplitude of wave α)
$k: 3$-momentum of the initial particle in the CM
$s-P^{2}:\left(k_{1}+k_{2}\right)^{2}$
$d \phi\left(P, q_{1}, q_{2}, q_{3}\right)$: invariant three-particle phase space

Parameterization of the Transition

$$
\begin{array}{ll}
a_{1}^{\alpha} & \text { Constant amplitude } \\
a_{2}^{\alpha} & \text { Phase } \\
a_{3}^{\alpha} & \text { Energy dependent amp. }
\end{array}
$$

Why PWA?

Masses

(a)

(b)

(e)
(d)

(g)

(h)
Hel. - Angle

(j)

(i)
(f)

(k)

+ Experimental Data

$\mathrm{pp} \rightarrow \mathrm{p} \mathrm{K}{ }^{+} \wedge$ Phase Space

Why PWA?

The $\Sigma \mathrm{N}$ Cusp Effect

Coupled Channel:

At Threshold : $2130 \mathrm{MeVc}^{-2}$

Quantum Number of Cusp: $0^{+} / 1^{+}(\mathrm{L}=0,2)$

S.Abd El-Samad, Eur.Phys.J A49(2013)

Cusp Spectral Function

The Breit-Wigner:

$$
\frac{d \sigma_{p \Lambda}}{d m_{p \Lambda}} \approx \frac{1}{\left|m_{R}^{2}-m_{p \Lambda}^{2}-i m_{p \Lambda} \Gamma\right|^{2}}
$$

Mass $M_{\text {cusp }}=2.13 \mathrm{GeV}$, With $\Gamma=0.02 \mathrm{GeV}$

Combined Analysis

Parameter Scan

Variation of Included N* Resonances
 Five best solution used to obtain systematical error

| Solution | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Loglike | -67142 | -67018 | -66878 | -66405 | -66393 |
| $N^{*}(1650)$ | + | + | + | + | + |
| $N^{*}(1710)$ | + | + | + | + | + |
| $N^{*}(1720)$ | + | + | + | - | - |
| $N^{*}(1875)$ | + | + | - | + | + |
| $N^{*}(1880)$ | + | + | + | + | + |
| $N^{*}(1895)$ | + | + | + | + | + |
| $N^{*}(1900)$ | - | + | + | + | + |
| $\Sigma N-C u s p$ | + | + | + | + | + |

PWA Results

PWA Results

- Comparison of Experimental Data and Results of PWA
- Using 3 Mass and 9 Angular Spectra

Experi ment	$\mathrm{E}_{\mathrm{B}}[\mathrm{GeV}]$	$\mathrm{X}^{2} / \mathrm{ndf}$
DISTO	2.15	1.52
COSY- TOF	2.16	0.44
DISTO	2.5	2.56
DISTO	2.85	3.55
FOPI	3.1	0.91
HADES	3.5	2.14

Total Cross Section

R.Muenzer et al.,Hyperfine 233, 159-166 (2016)

Value:

$$
\sigma_{p K \Lambda}=C_{1}\left(1-\frac{s_{0}}{\left(\sqrt{s_{0}}+\epsilon\right)^{2}}\right)^{C_{2}}\left(\frac{s_{0}}{\left(\sqrt{s_{0}}+\epsilon\right)^{2}}\right)^{C_{3}} \quad \begin{aligned}
& C_{1}=1.18 \pm 0.4210^{3} \\
& C_{2}=1.88 \pm 0.12 \\
& C_{3}=3.28 \pm 0.71
\end{aligned}
$$

A. Sibirtsev et.al. Nucl.Phys. A632,131 (1998)

Excitation Function

$$
\mathrm{P}+\mathrm{p} \rightarrow \mathrm{p}+\mathrm{K}^{+}+\Lambda \text { (non resonant) }
$$

Combined data set of data samples, provide required constraint on contributions

Cross Section

$$
P+p \rightarrow p+N^{*}\left(->K^{+}+\Lambda\right)
$$

Final State Interaction in PWA

$$
A_{2 b}^{\beta}=\frac{\sqrt{s_{i}}}{1+\frac{1}{2} r^{\beta} q^{2} a_{p \Lambda}^{\beta}+i q a_{p \Lambda}^{\beta} q^{2 L} / F\left(q, r^{\beta}, L\right)}
$$

$a_{p \Lambda}^{\beta}$ Scattering Length
r^{β} Effective Range of System

$$
\begin{array}{cc}
\alpha_{s}=-1.43 \pm 0.36 \pm 0,09 \mathrm{fm} & \alpha_{t}=-1.88 \pm 0.38 \pm 0.10 \mathrm{fm} \\
r_{s}=1.31 \pm 0.24 \pm 0,16 \mathrm{fm} & r_{t}=1.04 \pm 0.78 \pm 0.15 \mathrm{fm}
\end{array}
$$

Source	${ }^{1} S_{0} \alpha_{\Lambda-p}$	${ }^{1} S_{0} r_{\Lambda-p}$	${ }^{3} S_{1} \alpha_{\Lambda-p}$	${ }^{3} S_{1} r_{\Lambda-p}$	$\left\langle\alpha_{\Lambda-p}\right\rangle$
NLO[1]	-2.91 fm	2.78 fm	-1.54 fm	2.72 fm	-1.88 fm
LO[2]	-1.91 fm	1.40 fm	-1.23 fm	2.13 fm	-1.4 fm
$[2]$	$-1.8_{-4.2}^{+2.3} \mathrm{fm}$		$-1.6_{-0.8}^{+1.1} \mathrm{fm}$		$-1.25 \pm 0.08 \pm 0.03 \mathrm{fm}$
COSY- TOF[3]				$-1.31_{-0.49}^{+3.2} \pm 0.3$ $\pm 0.16 \mathrm{fm}$	
COSY- TOF[4]				$-1.233 \pm 0.014 \pm 0.3 \pm$	

[1] Nucl.Phys. A915, 24(2013) [2] Phys.Rev. 173,1452 (1968)
[3] Eur. Phys.J. A49, 157 (2013) / [4] F.Hauenstein, PhD Thesis (2014)

Summary

- Strangeness production has to understood in elementary reaction
- Different contribution Channels (N^{*}, Cusp Effect, FSI)
- Description requires Partial Wave Analysis.

Allow to analyze different beam data in parallel.
Combined analysis necessary to provide sufficient information

- Extraction of Excitation Function of N*
- N^{*} play dominate role in the production at GeV Energies
- Scattering Length and effective extraction
- Values for Singlet and Triplet separately
- Separation between LO and NLO difficult.

Outlook - Σ-N Cusp

The Breit-Wigner:

$$
\frac{d \sigma_{p \Lambda}}{d m_{p \Lambda}} \approx \frac{1}{\left|m_{R}^{2}-m_{p \Lambda}^{2}-i m_{p \Lambda} \Gamma\right|^{2}}
$$

Above the threshold

$$
\begin{gathered}
g_{p \Sigma} \ll g_{p \Lambda} \text { Symmetric } \\
g_{p \Sigma} \gg g_{p \Lambda} \text { Antisymmetric }
\end{gathered}
$$

Below the threshold

The Flatté parametrization:

$$
\frac{d \sigma_{p \Lambda}}{d m_{p \Lambda}} \approx \frac{\Gamma_{p \Lambda}}{\left|m_{R}^{2}-m_{p \Lambda}^{2}-i m_{p \Lambda}\left(\Gamma_{p \Lambda}+\Gamma_{p \Sigma}\right)\right|^{2}}
$$

$$
\Gamma_{p \Lambda}=g_{p \Lambda} * q_{p \Lambda} \quad \Gamma_{p \Sigma}=g_{p \Sigma} * q_{p \Sigma}
$$

$$
q_{p \Sigma}=\frac{\sqrt{\left(m_{p \Sigma}^{2}-\left(m_{\Sigma}+m_{p}\right)^{2}\right) *\left(m_{p \Sigma}^{2}-\left(m_{p}-m_{\Sigma}\right)^{2}\right)}}{2 m_{p \Sigma}}
$$

$$
q_{p \Sigma}=i * \frac{\sqrt{\left(\left(m_{\Sigma}+m_{p}\right)^{2}-m_{p \Sigma}^{2}\right) *\left(m_{p \Sigma}^{2}-\left(m_{p}-m_{\Sigma}\right)^{2}\right)}}{2 m_{p \Sigma}}
$$

S. Jowzaee et al., Eur. Phys. J. A52, 7 (2016)

Incoherent Analysis by COSY-TOF

Outlook - Σ-N Cusp : Combined Analysis

Experiment	$\mathrm{E}_{\mathrm{B}}[\mathrm{GeV}]$	Statistics
DISTO	2.15	121 k
COSY-TOF	2.16	43 k
DISTO	2.5	304 k
DISTO	2.85	424 k

Resulting value:

$$
\begin{gathered}
g_{p \Lambda}=0.38 \pm 0.06 \pm 0.008 \quad 10^{-2} \\
g_{p \Sigma}=1.60 \pm 0.07 \pm 0.03 \quad 10^{-2}
\end{gathered}
$$

Thank You

HADES Collaboration

DISTO Collaboration
M. Maggiora

FOPI Collaboration

COSY-TOF Collaboration

 J. Ritman, E. Roderburg F. Hauenstein, D. Gronzka

K-Cluster - Excellence Cluster Universe - TU Munich
L. Fabbietti, E. Epple, P. Klose, S.Lu, J. Siebenson, D. Soliman

Thank for your attention

Final State Interaction

Robert Münzer 59

Branching Ratio

	Mass $\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$	Width $\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$	$\Gamma_{\Lambda K} / \Gamma_{\text {All }} \%$
$\mathrm{~N}(1650) \mathrm{S}_{11}$	1.655	0.150	$3-11$
$\mathrm{~N}(1710) \mathrm{P}_{11}$	1.710	0.200	$5-25$
$\mathrm{~N}(1720) \mathrm{D}_{13}$	1.720	0.250	$1-15$
$\mathrm{~N}(1875) \mathrm{D}_{13}$	1.875	0.220	4 ± 2
$\mathrm{~N}(1880) \mathrm{P}_{11}$	1.870	0.235	2 ± 1
$\mathrm{~N}(1895) \mathrm{S}_{11}$	1.895	0.090	18 ± 5
$\mathrm{~N}(1900) \mathrm{P}_{13}$	1.900	0.250	$0-10$

