Recent Results from Photoproduction of Mesons

Natalie K. Walford University of Basel

Outline

- Motivation
- Experiment
- Extraction of Asymmetries
- Results
- Conclusion

- Different structures observed on proton and neutron data
- Neutron has different resonance contributions
- Neutron targets more difficult to deal with due to Fermi motion, FSI
- Sparse database requires more data
- Isospin decomposition of el. mag. transition amplitudes needs neutron measurements

Resonance Contributions

Different contributions for proton and neutron!!!!

Narrow Structure seen in η Photoproduction

- Narrow structure visible around W=1.66 GeV
- Seen by A2, GRAAL, CBELSA/ TAPS, and Sendai collaborations
- Different properties compared to other nucleon resonances (Γ~150 MeV)
- Input from polarization observables necessary to identify quantum numbers

N. Walford, Basel

Polarization Observables

Spin	Р	olarizatio	on	Transversity	Set
Observable	Beam	Target	Recoil	Representation	
$\left(\frac{d\sigma}{d\Omega}\right)_{\mu}$	-	-	-	$\frac{1}{2}(b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2)$	
Σ	l	-	-	$\frac{1}{2}(b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2)$	S
T	-	\boldsymbol{y}	-	$\frac{1}{2}(b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2)$	
Р	-	-	y'	$\frac{1}{2}(b_2 ^2 + b_4 ^2 - b_1 ^2 - b_3 ^2)$	
E	c	z	-	$Re(b_1b_3^* + b_2b_4^*)$	
F	c	х	-	$Im(b_1b_3^* - b_2b_4^*)$	BT
G	l	z	-	$Im(-b_1b_3^* - b_2b_4^*)$	
H	l	x	-	$\operatorname{Re}(b_1b_3^*-b_2b_4^*)$	
O_x	l	-	x'	$\operatorname{Re}(-b_1b_4^* + b_2b_3^*)$	
O_z	l	-	z'	$Im(b_1b_4^* + b_2b_3^*)$	\mathcal{BR}
C_x	c	-	x'	${ m Im}(b_2b_3^*-b_1b_4^*)$	
C_z	c	-	z'	$\operatorname{Re}(-b_1b_4^* - b_2b_3^*)$	
T_x	-	T	z'	${ m Re}(b_1b_2^*-b_3b_4^*)$	
T_z	-	\boldsymbol{x}	z'	${ m Im}(b_3b_4^*-b_1b_2^*)$	$T\mathcal{R}$
L_x	-	z	x'	$Im(-b_1b_2^* - b_3b_4^*)$	
L_z	-	z	z'	${ m Re}(-b_1b_2^*-b_3b_4^*)$	

Photoproduction described by four complex amplitudes 16 independent measurables calculated Extracted based on beam, target, and recoil polarization Not all observables are independent from each other

Photon		Target			Recoil			Target + Recoil			
		13-			x'	y'	<i>z</i> ′	x'	x'	z'	z'
	3 . 20	\boldsymbol{x}	\boldsymbol{y}	z		-	2	\boldsymbol{x}	z	\boldsymbol{x}	z
unpolarized	σ_0	0	Т	0	0	P	0	$T_{x'}$	$-\mathbf{L}_x$	$T_{z'}$	L_z
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$\left(\text{-L}_{z'} \right)$	$(\mathbf{T}_{z'})$	$(\text{-L}_{x'})$	$(-T_{x'})$
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0

N. Walford, Basel

Outline

- Motivation
- Experiment
- Extraction of Asymmetries
- Results
- Conclusion

The Mainz Microtron - MAMI

- LINAC (3.97 MeV)
- Racetrack microtrons (855 MeV)
- Harmonic double sided microtron (up to 1.6 GeV)
 - Linear and circular beam available
- Glasgow Tagging Spectrometer used

N. Walford, Basel

Crystal Ball/TAPS setup

N. Walford, Basel

- Crystal Ball:
 - 672 Nal crystals
 20° < θ < 160°
- TAPS:
 - 366 BaF₂ crystals and 72 PbWO₄ crystals 2° < θ < 20°
- PID done using *∆E E* with a plastic scintillator barrel
- Charged particles accessible with MWPC, no magnetic field
- Frozen D-Butanol and H-Butanol targets available

Outline

- Motivation
- Experiment
- Extraction of Asymmetries
- Results
- Conclusion

Extraction of *E*, $\sigma_{\frac{1}{2}}$, and $\sigma_{\frac{3}{2}}$

circularly polarized beam

2 extraction methods for *E*:

$$E^{vers1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{\sigma_{diff}}{\sigma_{sum}}$$

3 extraction methods for
$$\sigma_{N/2}$$

 $\sigma_{1/2}^{vers1} = \sigma_{unpol}(1 + E^{vers1})$
 $\sigma_{3/2}^{vers1} = \sigma_{unpol}(1 - E^{vers1})$
 $\sigma_{1/2}^{vers2} = \sigma_{unpol}(1 + E^{vers2}) = \frac{2\sigma_{unpol} + \sigma_{diff}}{2\sigma_{unpol}^2 - \sigma_{diff}}$
 $\sigma_{1/2}^{vers3} = \sigma_{unpol}(1 - E^{vers2}) = \frac{2\sigma_{unpol} + \sigma_{diff}}{2}$

 $\sigma_{3/2}^{vers3} = \frac{\sigma_{sum} - \sigma_{diff}}{2}$

$$E^{vers2} = \frac{\sigma_{diff}}{2\sigma_{unpol}}$$

11

N. Walford, Basel

Extraction of T and F

 $T\cos\phi' = \frac{1}{P_T} \frac{d\sigma^{\uparrow}\phi' - d\sigma^{\downarrow}\phi'}{d\sigma^{\uparrow}\phi' + d\sigma^{\downarrow}\phi'}$

 \uparrow , \checkmark denote target polarization state

 $Fcos\phi = \frac{1}{P_T P_{circ}} \frac{d\sigma^- \phi - d\sigma^+ \phi}{d\sigma^- \phi + d\sigma^+ \phi}$

+, - denote photon helicity state

2 methods to extract:

- Normalize with deuterium target (needs flux and efficiency correction)
- Normalize with D-Butanol/H-Butanol target (no flux or efficiency correction, but uses dilution factor)

- Φ is the angle between target polarization plane and production plane
- Φ' is the angle between target polarization plane and normal to production plane

Outline

- Motivation
- Experiment
- Extraction of Asymmetries
- Results
- Conclusion

E and $\sigma_{N/2}$ for ηN

Angular Asymmetries for ηN

Witthauer *et al.*, accepted to PRL

Legendre Coefficients for ηN

Model results with a positive interference sign of P_{11} and S_{11} are more similar to the measured data than the predictions without the addition of a narrow P_{11} state

Witthauer *et al.*, accepted to PRL

Another look at η n

Narrow structure seen in **Compton scattering** off proton:

GRAAL experiment: Kuznetsov *et al.*, PRC 91 042201

Peak at same W significant in relation to η n in **total cross section**:

A2 experiment: Werthmueller *et al.*, PRC 92 069801

1 /

N. Walford, Basel

Dieterle et al., in preparation

Dieterle et al., in preparation

E for $\pi^0\pi^0$ n

Full-Crystal Ball Open-CBELSA

Dieterle et al., in preparation

T, F for ηN

Strub et al., very preliminary

T, *F* for single $\pi^0 N$

T, *F* for $\pi^0\pi^0N$

F for $\pi^0\pi^0$ p

Garni et al., preliminary

F for $\pi^0\pi^0p$

Garni et al., preliminary

T for π⁰π⁰p

T for π⁰π⁰p

Garni et al., preliminary

Conclusion

- Database for neutrons is extremely sparse, more data required, but is coming
- New data will help to analyze N* properties
- Neutron measurements more difficult due to FSI and Fermi motion and require more time
- Channels investigated so far seem to have FSI effects less important for polarization observables than for cross sections
- Many upcoming results being prepared for publication

This work is supported by:

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation