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Purpose:

To present an analysis of the π0, η and η’ single and double 
Dalitz decays by means of a data-driven model-independent 
approach based on the use of rational approximants

Motivations:

●

●

To explore further applications of the η and η’ 
transition form factors obtained from experimental data at 
low and intermediate energies in the space-like region

To calculate the dilepton invariant mass spectra and 
branching ratios of these Dalitz decays in order to provide 
predictions for present and future experimental colls.



Outline:

In collab. with P. Masjuan, P. Sánchez-Puertas (Mainz) and 
S. Gonzàlez-Solís (UAB)
Phys. Rev. D89 (2014) 3, 034014 and
arXiv:1512.07520 [hep-ph]

● Pseudoscalar transition form factors

●

● Single Dalitz decays 
Results 

● Double Dalitz decays

● Padé approximants
● Application to η and η’ TFFs

● Conclusions
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● Pseudoscalar transition form factors
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●Pseudoscalar transition form factors (space-like region)



B. Aubert et al. (BABAR Collaboration), PRD 80 (2009) 052002

π0 TFF

S. Uehara et al. (BELLE Collaboration), PRD 86 (2012) 092007

●Pseudoscalar transition form factors



@ low-momentum transfer:
slope

curvature

or
axial anomaly
(not for η and η’) exp. decay width

@ large-momentum transfer:

F (Q2) =

Z
TH(x,Q2)�P (x, µF )dx

convolution of perturbative and 
non-perturbative regimes

TH(�⇤� ! qq̄) �P (qq̄ ! P )

@ lowest order in pQCD

● Pseudoscalar transition form factors

@ low-momentum transfer:
slope (related to charge radius)

curvature

or
axial anomaly
(not for η and η’) exp. decay width

@ large-momentum transfer:

F (Q2) =

Z
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●Pseudoscalar transition form factors



Q2F⌘(0)�⇤�(Q
2, 0) = a0Q

2 + a1Q
4 + a2Q

6 + . . .

PN
M (Q2) =

TN (Q2)

RM (Q2)
= a0Q

2 + a1Q
4 + a2 +Q6 + · · ·+O((Q2)N+M+1)

simple, systematic and model-independent
parametrization of experimental data in the 
whole energy range (better convergence)

Fitting method: use of different sequences of PAs

● How many sequences?
depends on the analytic structure of the exact function

● How many elements per sequence?
limited by exp. data points and statistical errors

●Padé approximants



How to ascribe a systematic error to the results?

test the method with a model try different models

P. Masjuan, PRD 86 (2012) 094021

slope
curvature 21% of sys. error

5.6% of sys. error

● Log model:

● Regge model:

slope
curvature 9.4% of sys. error

2.9% of sys. error

P. Masjuan, S. Peris and J.J. Sanz-Cillero, PRD 78 (2008) 074028● Padé Approximants
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To use the P[N,1](Q2) and P[N,N](Q2) sequences of PAs 

single resonance dominance

asymptotic behaviour

η TFF η’ TFF

● Application to η and η’ TFFs



Slope: η TFF η’ TFF

Curvature:

● Application to η and η’ TFFs

Slope: η TFF η’ TFF

Curvature:

● Application to η and η’ TFFs



● Results
Slope and curvature:

Comparison with other results:

ChPT: bη=0.51, bη’=1.47

VMD: bη=0.53, bη’=1.33

cQL: bη=0.51, bη’=1.30

BL: bη=0.36, bη’=2.11

CELLO: bη=0.428(89), bη’=1.46(23)

CLEO: bη=0.501(38), bη’=1.24(8)

Lepton-G: bη=0.57(12), bη’=1.6(4)

MAMI: bη=0.58(11), WASA: bη=0.68(26)

NA60: bη=0.585(51)

Disp: bη=0.61(+0.07)(-0.03), bη’=1.45(+0.17)(-0.12) η,η’→γ*γ



● Further applications of this method

Analysis of time-like processes (η,η’→l+l-γ) 9
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FIG. 7: Results of this work (solid squares) for the η TFF, |Fη(mll)|
2, compared to other recent measurements and theoretical

predictions: former data of the A2 Collaboration [6] (open circles in (a)) and the NA60 in peripheral In–In data [7] (open
squares in (b)), calculations of Refs. [24] (dash-dotted line in (a)), Refs. [27] (dashed line with an error band in (a)), and
Ref. [31] (dotted line with an error band in (b)). The solid line is the fit from Fig. 6(b) rescaled so that p0 = 1.

is

Λ−2 = (1.95± 0.15stat ± 0.10syst) GeV−2, (3)

which is in very good agreement within the errors with all
recent results reported in Refs. [6–8]. As seen in Fig. 7,
the |Fη(mll)|2 results of this work are in similar good
agreement within the error bars with the data points from
Refs. [6, 7].
The uncertainty reached for the Λ−2 value in the

present work is smaller than those of all previous mea-
surements based on the η → e+e−γ decay, is of a simi-
lar magnitude as the NA60 value from peripheral In–In
data [7], and still yields to the latest, preliminary result
of the NA60 from p–A collisions [8].
In Fig. 7, the results of this work for |Fη(mll)|2 are also

compared to three different theoretical predictions. Since
all models assume that |Fη(mll = 0)|2 = 1, for a better
comparison, the fit to the data points from Fig. 6(b) is
rescaled by setting its normalization parameter to p0 = 1
and leaving its second parameter p1, reflecting the slope
parameter Λ−2, unchanged. The calculation by Ter-
schlüsen and Leupold (TL) combines the vector-meson
Lagrangian proposed in Ref. [22] and recently extended
in Ref. [23], with the Wess-Zumino-Witten contact inter-
action [24] (see also Ref. [25] for the corresponding case
of the π0 TFF). Their calculation agrees very well with
the standard VMD form factor. As seen, the TL cal-
culation (shown in Fig. 7(a) by a dash-dotted line) goes
slightly lower than the pole-approximation (Eq. (2)) fit
to the present data, whereas it fully describes the data
points within the error bars.

The second calculation is based on a model-
independent method using Padé approximants that was
developed for the π0 TFF in Ref. [26]. Using space-
like data (CELLO [28], CLEO [29], BABAR [30]), this
method provides a parametrization that is also suited
to describe data in the range mll = (0.−

√
0.4) GeV/c2,

and thus provides a model-independent prediction for the
timelike TFF [27]. Over the full mll range, this calcula-
tion (shown in Fig. 7(a) by a dashed line with an error
band) practically overlaps with the pole-approximation
fit to the present data points.
In another recent calculation [31] by the Jülich group,

the connection between the radiative decay η → π+π−γ
and the isovector contributions of the η → γγ∗ TFF is
exploited in a model-independent way, using dispersion
theory (DT). This calculation (shown in Fig. 7(b) by a
dotted line with an error band) goes slightly above the
fit to the present data.

V. SUMMARY AND CONCLUSIONS

A new determination of the electromagnetic transi-
tion form factor from the η → e+e−γ Dalitz decay
was presented in this paper. The statistical accuracy
achieved in this work surpasses all previous measure-
ments of η → e+e−γ and matches the NA60 result based
on η → µ+µ−γ decays from peripheral In-In collisions.
Compared to the former determination of the η TFF by
the A2 Collaboration, an increase by more than one or-
der of magnitude in statistic has been achieved. This was
accomplished by an analysis of three times more data

M. Unverzagt et al. (A2 Coll. @MAMI), PRC 89 (2014) 044608

Our prediction is behind 
the experimental fit!

The Transition Form Factor
Results for the ⌘ & ⌘0 TFF with Space-like data

Update with MAMI Time-like data (PRELIMINARY)
Applications

• Our method may be extended to low q

2 time-like data.
• Alternatively, we can use the data from MAMI in our fitting procedure.
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Application to η TFF in the time-like region●
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Figure 1. Modulus square of the normalized time-like ⌘ TFF, e
F⌘��⇤(q2), as a function of the

invariant dilepton mass,
p
s ⌘ m``. The predictions coming from the P

5
1 (q2) (red solid line) and

P

2
2 (q2) (black long-dashed line) PAs, and the Taylor expansion (blue dot-dashed line) are compared

to the experimental data from ⌘ ! e

+
e

�
� [4] (black circles) and ⌘ ! µ

+
µ

�
� [7] (green squares).

The one-sigma error bands associated to P

5
1 (q2) (light-red) and P

2
2 (q2) (light-gray) PAs, and the

QED prediction (gray short-dashed line) are also displayed.

revealed the appearance of a pole in the range (0.83, 0.86) GeV for the cases of a P

L
1

(q2)

sequence. Consequently, we cannot employ the method of PAs for describing the time-
like TFF in the entire phase-space region and a complementary approach must be used.
Then, we propose to match the description based on PAs to that given by eq. (1.4) at
a certain energy point10. Given the mass and the width of the ⇢ meson, the first of the
resonances included in the VMD description, the region of influence due to its presence
may be defined using the half-width rule as M⇢ ± �⇢/2 [51], thus deducing the value of
the radius " mentioned earlier. The particular energy point located at

p
s ' 0.70 GeV, the

lowest value of the former region for M⇢ ' 775 MeV and �⇢ ' 150 MeV, fixes the optimal
matching point11. Fixed this value, a representation valid in the whole phase-space domain
is that given by the PA below the matching point an eq. (1.4) above it. In order to match
both descriptions of the form factor at the matching point we have to rescale the VMD

10To proceed with the matching, we have considered an energy-dependent width for the ⇢ resonance,

�⇢(q
2) = �⇢

q2

M2
⇢

�3(q2)
�3(M2

⇢ )
,

with �(q2) =
p

1� 4M2
⇡/q2, and a constant width for the ! and � narrow resonances. Input values for the

masses and widths as well as for the rest of the couplings entering eq. (1.4) are taken from ref. [1].
11The region of influence attributed to the ! and � poles is negligible since these are narrow resonances

and are placed far from the matching point.

– 7 –

Our predictions 
not fits!



Application to η’ TFF in the time-like region●
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Figure 2. Modulus square of the normalized time-like ⌘

0 TFF, e
F⌘0��⇤(q2), as a function of the

invariant dilepton mass,
p
s ⌘ m``. The predictions up to the matching point located at

p
s = 0.70

GeV coming from the P

6
1 (q2) (red solid line) and P

1
1 (q2) (black long-dashed line) PAs, and the

Taylor expansion (blue dot-dashed line) are compared to the experimental data from ⌘

0 ! e

+
e

�
�

[8] (black circles). From the matching point on, rescaled versions of the VMD description in eq. (1.4)
are used. The one-sigma error bands associated to P

6
1 (q2) (light-red) and P

1
1 (q2) (light-gray) PAs,

and the QED prediction (gray short-dashed line) are also displayed.

result accordingly. In this manner, we keep track of the resonant behaviour in the upper
part of the spectrum where PAs cannot be applied, while the low-energy region is predicted
in a more systematic way as compared to VMD by PAs established uniquely from space-like
data. This will allow us to integrate the whole spectrum and predict the branching ratio of
the several ⌘0 Dalitz decays considered here.

Our predictions for the time-like ⌘

0 TFF together with the experimental data points
from the BESIII Collaboration on the decay ⌘

0 ! e

+

e

�
� [8] (black circles) are displayed

in figure 2. The results from the P

6

1

(q2) (red solid line) and P

1

1

(q2) (black long-dashed
line) are shown up to the matching point. The corresponding error bands are in light-red
and light-gray, respectively. From the matching point on our predictions are replaced by a
rescaled VMD representation based on the three lowest-lying vector resonances. Our PAs-
based predictions are again in fine agreement with experiment. A Taylor expansion with
b⌘0 = 1.30(15)

stat

(7)
sys

and c⌘0 = 1.72(47)
stat

(34)
sys

[17] is also included for comparison.
It is worth mentioning that an extrapolation of the P

6

1

(q2) PA beyond the matching point
nicely passes through the last experimental point. This can be understood in the following
terms. The VMD description includes three resonances whose poles are located at different
places, while the PL

1

(q2) PAs include only one. Making use of the single-pole approximation
in eq. (1.3) and the Taylor expansion in eq. (2.2) for the case of the ⌘

0, the slope parameter

– 8 –



Application to η’ TFF in the time-like region●

the right falloff as 1/Q2 [12]1. Furthermore, the operator product expansion (OPE) predicts
the behaviour of the double-virtual TFF in the limit Q

2

1

= Q

2

2

⌘ Q

2 ! 1 to be the same
as for the single one, that is, 1/Q2 [19]2. For the intermediate-momentum transfer region,
the most common parameterization of the TFF, widely used by experimental analyses, is
provided by the Vector Meson Dominance model (VMD). The dispersive representation of
the TFF in terms of q2, where q2 is the photon virtuality in the time-like momentum region,
can be written as

FP��⇤(q2) =

Z 1

s0

ds

⇢(s)

s � q

2 � i✏

, (1.2)

where s

0

is the threshold for the physical intermediate states imposed by unitarity and
⇢(s) = ImFP��⇤(s)/⇡ is the associated spectral function. To approximate this intermediate-
energy part of the spectral function one usually employs one or more single-particle states.
As an illustration, the contribution to the spectral function of a narrow-width resonance of
mass M

e↵

reduces to ⇢(s) / �(s � M

2

e↵

), which yields

FP��⇤(q2) =
FP��(0)

1 � q

2

/⇤2

, (1.3)

where FP��(0) serves as a normalization constant and ⇤(= M

e↵

) is a real parameter which
fixes the position of the resonance pole on the real axis. However, this simple and successful
single-pole approximation given in eq. (1.3) breaks down for q

2 = ⇤2. One may cure this
limitation by taking into account resonant finite-width effects as proposed by Landsberg
in ref. [20] when considering the transitions P ! `

+

`

�
� in a VMD framework. According

to this model, these transitions occur through the exchange of the lowest-lying ⇢, ! and �

vector resonances and their contributions to the TFF are written as

e
FP��⇤(q2) =

0

@
X

V=⇢,!,�

gV P�

2gV �

1

A
�1

X

V=⇢,!,�

gV P�

2gV �

M

2

V

M

2

V � q

2 � iMV �V (q2)
, (1.4)

where e
FP��⇤(q2) = FP��⇤(q2)/FP��(0) is defined as the normalized TFF, gV P� and gV � are

the V P� and V � couplings, respectively, MV the vector masses, and �V (q2) the energy-
dependent widths.

Despite the notorious success of VMD in describing lots of phenomena at low and in-
termediate q

2, particularly useful for the decays we consider in this work, this model can be
seen as a first step in a systematic approximation. Padé approximants are used to go be-
yond VMD in a simple and model-independent manner also incorporating information from
higher energies, allowing an improved determination of the low-energy constants relative to
other methods [21]. For this reason, we make use in our study of the works in refs. [17, 22],
where all current measurements of the space-like TFFs �

⇤
� ! P [23–28], produced in the

reactions e

+

e

� ! e

+

e

�P, have been accommodated in nice agreement with experimental
1Perturbative QCD predicts limQ2!1 Q2F⇡0��⇤(Q2) = 2F⇡. Alternative values to this result exist, see

for instance refs. [13, 14], though they seem to be disfavored, as pointed out in refs. [15, 16]. For the ⌘ and
⌘0, see the asymptotic values obtained in refs. [17, 18].

2The OPE predicts for the case of the pion limQ2!1 Q2F⇡0�⇤�⇤(Q2, Q2) = 2F⇡/3.
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Figure 2. Modulus square of the normalized time-like ⌘

0 TFF, e
F⌘0��⇤(q2), as a function of the

invariant dilepton mass,
p
s ⌘ m``. The predictions up to the matching point located at

p
s = 0.70

GeV coming from the P

6
1 (q2) (red solid line) and P

1
1 (q2) (black long-dashed line) PAs, and the

Taylor expansion (blue dot-dashed line) are compared to the experimental data from ⌘

0 ! e

+
e

�
�

[8] (black circles). From the matching point on, rescaled versions of the VMD description in eq. (1.4)
are used. The one-sigma error bands associated to P

6
1 (q2) (light-red) and P

1
1 (q2) (light-gray) PAs,

and the QED prediction (gray short-dashed line) are also displayed.

result accordingly. In this manner, we keep track of the resonant behaviour in the upper
part of the spectrum where PAs cannot be applied, while the low-energy region is predicted
in a more systematic way as compared to VMD by PAs established uniquely from space-like
data. This will allow us to integrate the whole spectrum and predict the branching ratio of
the several ⌘0 Dalitz decays considered here.

Our predictions for the time-like ⌘

0 TFF together with the experimental data points
from the BESIII Collaboration on the decay ⌘

0 ! e

+

e

�
� [8] (black circles) are displayed

in figure 2. The results from the P

6

1

(q2) (red solid line) and P

1

1

(q2) (black long-dashed
line) are shown up to the matching point. The corresponding error bands are in light-red
and light-gray, respectively. From the matching point on our predictions are replaced by a
rescaled VMD representation based on the three lowest-lying vector resonances. Our PAs-
based predictions are again in fine agreement with experiment. A Taylor expansion with
b⌘0 = 1.30(15)

stat

(7)
sys

and c⌘0 = 1.72(47)
stat

(34)
sys

[17] is also included for comparison.
It is worth mentioning that an extrapolation of the P

6

1

(q2) PA beyond the matching point
nicely passes through the last experimental point. This can be understood in the following
terms. The VMD description includes three resonances whose poles are located at different
places, while the PL

1

(q2) PAs include only one. Making use of the single-pole approximation
in eq. (1.3) and the Taylor expansion in eq. (2.2) for the case of the ⌘

0, the slope parameter

– 8 –
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Single Dalitz decays●

η→l+l-γ (l=e,µ)
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Figure 3. Decay rate distribution for ⌘ ! e

+
e

�
� (blue solid curve) and ⌘ ! µ

+
µ

�
� (black solid

curve). The corresponding QED estimates are also displayed (gray dotted and long-dashed curves,
respectively).

the momentum dependence of the TFF and higher deviations from the QED pointlike
estimates are expected. This is precisely what our predictions reflect in figure 3 where the
dilepton invariant mass distributions of ⌘ ! e

+

e

�
� (blue solid curve) and ⌘ ! µ

+

µ

�
�

(black solid curve) are compared to the QED predictions (gray dotted and dashed curves,
respectively). For the sake of comparison, we have employed a single-pole P

5

1

(q2) PA in
our prediction. The diagonal (asymptotically well-behaved) PA P

2

2

(q2) produces a very
similar description, as expected from the small differences between the two PA versions of
the TFF in the whole kinematical range, as discussed in section 2.2. With one version or
the other, the impact of the TFF is much more sizable, in absolute terms, in the dimuon
case, the reason being again a peaked distribution at the very-low energy region of the
dielectron spectrum, which gives the most important contribution to the branching ratio,
where the effect of the TFF is negligible. Notice that the high-energy part of the spectra
overlap since the only difference between them is the dilepton production threshold. Once
the distributions are integrated, we see from table 1 that the mode involving muons in
the final state has increased its branching ratio (BR) by a 50% with respect to the QED
prediction, while the effect is much less considerable when dealing with electrons (⇠ 3.5%)
where, predictions with and without considering TFF effects are compatible within errors at
the current level of accuracy. The source of the associated errors arise from the error bands
shown in figure 1. In all, our predictions are in good agreement with present experimental
measurements. Comparing with other authors results, we agree with: the QED estimates
of ref. [67], the predictions of ref. [43] and the values of ref. [35], while tiny differences with
ref. [36] are noticed.
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Source BR(⌘ ! e

+

e

�
�) · 103 BR(⌘ ! µ

+

µ

�
�) · 104

this work [P 5

1

] 6.60+0.50
�0.46 3.25+0.37

�0.33

this work [P 2

2

] 6.61+0.53
�0.49 3.30+0.62

�0.54

QED 6.38 2.17

Experimental 6.9(4)[1]
measurements 6.6(4)

stat

(4)
syst

[3] 3.1(4) [1]
6.72(7)

stat

(31)
syst

[6]

Table 1. Comparison between our BR predictions for ⌘ ! `

+
`

�
� and experimental measurements.

Source BR(⌘0 ! e

+

e

�
�) · 104 BR(⌘0 ! µ

+

µ

�
�) · 104

this work [P 6

1

] 4.42+0.38
�0.34 0.81+0.15

�0.12

this work [P 1

1

] 4.35+0.28
�0.26 0.74(5)

QED 3.94 0.38

Experimental measurements 4.69(20)
stat

(23)
sys

[8] 1.08(27) [9]

Table 2. Comparison between our BR predictions for ⌘0 ! `

+
`

�
� and experimental measurements.

3.3 ⌘

0 ! `

+

`

�
� (` = e, µ)

The large mass of the ⌘

0 increases the upper kinematical limit by ⇠ 410 MeV with respect
to the case of the ⌘. The TFF description is given in section 2.3, where the effect of the
intermediate vector resonances ⇢, ! and � is included. As shown in figure 4, the distribution
of the decay ⌘

0 ! e

+

e

�
� (blue solid curve) evidences again a marked peak at low-energies

which, despite the contribution coming from the resonance region, dominates the decay
as occurred in ⇡

0(⌘) ! e

+

e

�
�. On the contrary, the effect of the TFF on the decay

⌘

0 ! µ

+

µ

�
� (black solid curve) is larger than in ⌘ ! µ

+

µ

�
�, increasing the BR by a

factor of about 2. This is so because both phase space considerations and the effect of
passing through a q

2 region where resonances may be produced on-shell. Interestingly, the
contribution due to the ⇢ resonance bends the distribution while the inclusion of the !

resonance accounts for the sharp peak at around 0.8 GeV. Numerical results are presented
in table 2, where the source of the error comes from the error bands associated to the TFF.
From the theory side, our predictions are in accordance with those of ref. [43], while they
are slighlty below respect to both the recent experimental measurement of ⌘0 ! e

+

e

�
� [8]

and the old measurement of ⌘0 ! µ

+

µ

�
� [9], though in agreement within errors in both

cases. To sum up, the pattern of both ⌘ and ⌘

0 single Dalitz decays is notably similar: the
impact of the TFF on the muonic channel is much larger than in the electronic ones as
discussed in section 3.2.

4 Double Dalitz decays

Double Dalitz decays involve the TFF of double virtuality as described in section 2. They
implicate four particles in the final state which makes the phase space integration much more
tedious. In case of having two pairs of non-identical particles, that is ⌘

(0) ! e

+

e

�
µ

+

µ

�,
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the required diagram is shown in figure 5 (left diagram) and the amplitude of the decay
reads

A(⌘(0) ! e

+

e

�
µ

+

µ

�) = �i2!
e

4

q

2

k

2

FP�⇤�⇤(q2, k2)"µ⌫↵�qµk⌫ ū(qe�)�↵v(qe+)ū(qµ�)��v(qµ+) .

(4.1)
The corresponding decay rate distribution can be reduced to13

d

2�

dM

2

e+e�M
2

µ+µ��exp

⌘(0)!��

= S 8↵2

9⇡2

m

6
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| eF (q2, k2)|2

r
1 � 4m2

e

k

2

s

1 � 4m2

µ

q

2

⇣
1 + 2m2

e
k2

⌘⇣
1 +

2m2
µ

q2

⌘

k

2

q

2


1

4
(m2

⌘(0) � (k2 + q

2))2 � k

2

q

2

�
3/2

, (4.2)

where, in this case, S = 2 in agreement with the expression given in ref. [44]. The TFF
appears again normalized to unity at the origin.

On the contrary, in case of having two pairs of identical particles in the final state, that
is P ! e

+

e

�
e

+

e

� or ⌘(0) ! µ

+

µ

�
µ

+

µ

�, one should consider both the direct and exchange
diagrams of figure 5 (left and right diagrams). Therefore, the total amplitude of the process
reads

A = A
dir

� A
exch

, (4.3)

where the appearance of the minus sign is due to the exchange of two indistinguishable
fermions in the final state. Then, squaring the amplitude of eq. (4.3) we arrive at

|A|2 = |A
dir

|2 + |A
exch

|2 � 2(<A
dir

A⇤
exch

) , (4.4)
13See, for instance, ref. [68] for reducing distributions of four body-final-state decays into two invariant

masses.
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� (black solid curve) is larger than in ⌘ ! µ

+

µ

�
�, increasing the BR by a

factor of about 2. This is so because both phase space considerations and the effect of
passing through a q

2 region where resonances may be produced on-shell. Interestingly, the
contribution due to the ⇢ resonance bends the distribution while the inclusion of the !

resonance accounts for the sharp peak at around 0.8 GeV. Numerical results are presented
in table 2, where the source of the error comes from the error bands associated to the TFF.
From the theory side, our predictions are in accordance with those of ref. [43], while they
are slighlty below respect to both the recent experimental measurement of ⌘0 ! e
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and the old measurement of ⌘0 ! µ
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� [9], though in agreement within errors in both

cases. To sum up, the pattern of both ⌘ and ⌘

0 single Dalitz decays is notably similar: the
impact of the TFF on the muonic channel is much larger than in the electronic ones as
discussed in section 3.2.
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Figure 5. Double Dalitz direct (left) and exchange (right) diagrams.

where not only appear the contributions from both the direct and exchange diagrams but
an interference term. We notice that the contribution to the partial decay width coming
from the first and the second term of eq. (4.4) is obviously the same, that is �

dir

= �
exch

,
because the integration variables are nothing more than dummy indices. In this way, the
contribution coming from the sum of the direct and exchange diagrams, �

dir+ex

, is obtained
through the use of eq. (4.2), of course after permuting µ ! e (or equivalently e ! µ),
now with S = 1 once the factor of 1

2!2!

, accounting for the two pairs of two identical
particles in the final state, has been taken into account. Regarding the interference term,
its computation is much more cumbersome. We have relegated to appendix A the detailed
expression due to its length but it is worth to comment that we have obtained an expression
in terms of five invariant masses which has required a Monte Carlo (MC) simulation to be
integrated.

4.1 ⇡

0 ! e

+

e

�
e

+

e

�

The only possible double Dalitz decay of the neutral pion is ⇡

0 ! e

+

e

�
e

+

e

�, other pos-
sibilities are not kinematically allowed. In view of the results from ⇡

0 !! e

+

e

�
�, one

may expect that the overall effect of the TFF will be again small. In figure 6, we show
our results for the different contributions to the decay rate distribution as a function of the
invariant mass of one dielectron pair of the direct diagram. Concretely, we display the curve
corresponding to the direct diagram (green solid line), the curve of the contribution of the
exchange diagram expressed in terms of the former dielectron invariant mass of the direct
diagram14 (red dotted line), the interference term (blue dotted line) and finally the total
distribution (black dotted line). We want to note that the contribution from both direct
and exchange diagrams integrates obviously the same and that the interference is small
and destructive. Our BR predictions are shown in table 3 from which we corroborate that
the effect of the TFF is small because the main contribution to the BR proceeds from the
very low-momentum transferred region where we a peak emerges, as already occurred in
⇡

0 ! e

+

e

�
�. Our results are well in accordance with current experimental measurements.

The source of the associated error comes from the uncertainty on the low-energy parameters
14The curve of the exchange diagram expressed in its own variables would look equal as the green solid

line of figure 6. In this work, we have opted to show, in just one figure, all the contributions as a function of
one dielectron invariant mass of the direct diagram. In this convention, the exchange diagram as expressed
in figure 6 has also required a MC integration.
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Bivariate approximants:

Standard Factorisation approach

is identified as b⌘0 = m

2

⌘0/⇤
2. Using the b⌘0 value deduced from eq. (1.4) one gets ⇤ =

M

e↵

= 0.822(58) GeV, where the error is due to the half-width rule and can be utilized as
a measure of the region of influence of the pole. The former value is very similar to the one
obtained from the pole position of the P

6

1

(q2) PA, located at
p
s = 0.833 GeV. Therefore,

the region of influence of this pole can be estimated to be in the interval (0.77, 0.89) GeV.
It is for this reason that the last experimental point would be also in agreement with the
P

6

1

(q2) prediction [46]. This is not so for the P

1

1

(q2) PA, thus showing that increasing the
Padé order allows for a better description of the data. In any case, for the numerical analysis
of the different decays involving the ⌘

0 we also keep both PAs for the sake of comparison.

2.4 P ! �

⇤
�

⇤

The double-virtual TFF, FP�⇤�⇤(q2
1

, q

2

2

), depends on both photon virtualities, q

1

and q

2

.
Due to Bose symmetry, it must satisfy FP�⇤�⇤(q2

1

, q

2

2

) = FP�⇤�⇤(q2
2

, q

2

1

). Its normalization is
obviously the same as the single-virtual TFF, FP�⇤�⇤(0, 0) = FP��⇤(0), and can be extracted
either from the two-photon partial width by means of eq. (1.1) or from the axial anomaly.
It must also satisfy that when one of the photons is put on-shell the double-virtual TFF
becomes the single-virtual one, i.e. limq2i !0

FP�⇤�⇤(q2
1

, q

2

2

) = FP��⇤(q2) for i = 1, 2. In
addition, the double-virtual TFF can fulfil the following asymptotic space-like constraints,
limQ2!1 FP�⇤�⇤(�Q

2

, 0) / 1/Q2 [52] and limQ2!1 FP�⇤�⇤(�Q

2

,�Q

2) / 1/Q2 [19].
Due to the lack of experimental information in the case of double-virtual TFFs, our ini-

tial ansatz will be to use the standard factorisation approach, which in terms of normalized
form factors reads e

FP�⇤�⇤(q2
1

, q

2

2

) = e
FP��⇤(q2

1

, 0) eFP��⇤(0, q2
2

) [53–55]. This double-virtual
TFF description may or may not satisfy the high-energy constraints above. For instance,
the PA P

0

1

(q2) = a

0

/(1� a

1

q

2), corresponding to the single-pole approximation in eq. (1.3)
motivated by VMD, would induce a 1/q4 term in the double-virtual TFF, which violates
the last of the asymptotic constraints mentioned before (OPE prediction) [19, 56–58]. For
this reason, we also use for our study the lowest order bivariate approximant

P

0

1

(q2
1

, q

2

2

) =
a

0,0

1 � b1,0
M2

P
(q2

1

+ q

2

2

) + b1,1
M4

P
q

2

1

q

2

2

, (2.4)

which consists in a generalization of the univariate PAs named Chisholm approximants
(CAs) [47]. The analysis of the ⇡

0 ! e

+

e

� decay is a recent example that illustrates the
application of these CAs [59] (see also P. Masjuan’s contribution in ref. [60]). In eq. (2.4),
a

0,0 is identified as the normalization FP�⇤�⇤(0, 0) and then fixed from eq. (1.1), b
1,0 is the

slope of the single-virtual TFF obtained in refs. [17, 22], that is, b⇡ from eq. (2.3) for the pion
and b⌘(0) from eq. (5) in ref. [17] for the ⌘ and ⌘

0, respectively, and b

1,1 would correspond to
the double-virtual slope which may be extracted in the future as soon as experimental data
for the double-virtual TFFs become available. For the numerical analysis, we consider, as a
conservative estimate, to vary b

1,1 from the value respecting the OPE prediction, b
1,1 = 0,

to b

1,1 = 2b2
1,0, far from the factorisation result b

1,1 = b

2

1,0. In this manner, we can test the
sensitivity of our predictions to the double-virtual slope. We also encourage experimental
groups to perform double-virtual TFF measurements in order to fix this parameter. In this
work, we employ both descriptions indistinctly, the factorisation ansatz and the bivariate
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Double Dalitz decays●

η→e+e-µ+µ-

η→l+l-l+l- (l=e,µ)
Source TFF

BR(⌘ ! e

+

e

�
e

+

e

�) · 105 BR(⌘ ! µ

+

µ

�
µ

+

µ

�) · 109

dir+exch inter dir+exch inter

T
hi

s
w

or
k

CAs

b1,1 = 0 2.74(3) -0.02 4.47(26) -0.32
b1,1 = b1,0 2.73(3) -0.03 4.31(26) -0.32
b1,1 = 2b1,0 2.73(3) -0.03 4.15(26) -0.32

fact.
P 5
1 2.72+0.42

�0.37 -0.03 4.23+0.79
�0.67 -0.43

P 2
2 2.73+0.45

�0.38 -0.03 4.30+1.08
�0.88 -0.47

QED 2.56 -0.02 2.59 -0.19

Exp. measurements
3.2(9)

stat

(5)
sys

[6] < 3.6 · 10�4 (90% CL) [5]
2.4(2)

stat

(1)
sys

[11]

Table 5. Branching ratio predictions for ⌘ ! e

+
e

�
e

+
e

� and ⌘ ! µ

+
µ

�
µ

+
µ

� confronted to
current experimental status.

to improve our knowledge on it. Interestingly, a precise experimental measurement of this
mode at the per cent level of precision leaves us in position to estimate the value of b

1,1.
For that purpose, it is also required to diminish the associated uncertainty to the TFF.
Here enters the ability of the Padé method we use for accommodating new experimental
data as soon as released by experimental groups. On the contrary, this same exercise for
⌘ ! e

+

e

�
e

+

e

� would demand accurate measurements at the per mil level to unveil this
quantity, far from the present situation. Our predictions are in good agreement with the
results of ref. [43] for the electronic mode, while a (10 � 15)% over the muonic prediction.
Comparing with ref. [36] (who did not considered the interference term) we are a 10% over
for the electronic case while his result for ⌘ ! µ

+

µ

�
µ

+

µ

� is 60% smaller. We are also
in accordance with the estimate of ref. [35] for ⌘ ! e

+

e

�
e

+

e

�. Regarding the pure QED
calculation of ref. [67], we are in perfect agreement for the electronic channel while tiny
differences are found in the muonic decay, probably caused by the updated values of our
inputs values.

4.3 ⌘

0 ! `

+

`

�
`

+

`

� (` = e, µ)

Regarding the double Dalitz decays of the ⌘

0, we have the same three possible final states
as for the ⌘. However, in this case we have only adopted the factorisation approach ansatz
for describing the double-virtual TFF of the ⌘

0. The reason is because the use of Chisholm
approximants, which may respect the appropriate asymptotic behavior q

�2, would only
apply at low energies, concretely up to the matching point where PAs are applicable, while
beyond, we are somehow forced to employ the factorisation approximation, through a VMD
description, which induces a q

�4 term. So, there is no gain respecting the high-energy
behavior in the low-energy region if we violate it at high energies. We compute first ⌘

0 !
e

+

e

�
µ

+

µ

� again through eq. (4.2). Noticeably, it follows the same trend as ⌘ ! e

+

e

�
µ

+

µ

�,
with the difference that this case is sensitive to the resonance region as can be read off from
figure 9. Once more, the low-momentum region basically dominates the distribution when
working with the electronic variable (blue solid curve) while it is a smooth falling function
of the dimuonic momentum with a small bump and a sharp peak accounting for the effect of
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Figure 7. Decay distribution for ⌘ ! e

+
e

�
µ

+
µ

� with respect to the dielectron (blue curve) and
to the dimuon (red curve) invariant mass.

Source Double-virtual TFF BR(⌘ ! e

+

e

�
µ

+

µ

�) · 106

This work
Chisholm approximants

b

1,1 = 0 2.39(12)
b

1,1 = b

1,0 2.39(12)
b

1,1 = 2b
1,0 2.38(12)

factorisation approach
P

5

1

2.35+0.45
�0.38

P

2

2

2.39+0.64
�0.51

QED 1.57

Experimental measurement < 1.6 · 10�4 (90% CL) [5]

Table 4. Branching ratio predictions for ⌘ ! µ

+
µ

�
e

+
e

� compared to the current experimental
upper bound.

4.2 ⌘ ! `

+

`

�
`

+

`

� (` = e, µ)

The double Dalitz decays of the ⌘ meson, ⌘ ! e

+

e

�
e

+

e

�, ⌘ ! µ

+

µ

�
µ

+

µ

�, and ⌘ !
e

+

e

�
µ

+

µ

�, are now kinematically allowed. Let us first analyze the latter for simplicity.
In this case, the two dilepton pairs are different and consequently there is no interference
phenomenon. Hence, the distribution rate is just given by eq. (4.2) and shown in figure 7 in
two different manners, one expressed in terms of the dielectron invariant mass and the other
in the dimuon variable (blue and red solid lines respectively), where, of course, both curves
integrate the same. Our predictions are shown in table 4, where the source of the associated
errors comes from the error bands associated to the TFF for the case of the factorisation
approach, and from the uncertainty on the single-virtual slope for the description employing
CAs.

From the experimental side, we respect the current upper limit, while from the theory
side, because of the appearance of a dimuon pair in the final state, the effect of the TFF
increases the BR about 50% for the same arguments as explained in ⌘ ! `

+

`

�
�. This
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Double Dalitz decays●

η’→e+e-µ+µ-

η’→l+l-l+l- (l=e,µ)
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Figure 9. Decay distribution for ⌘0 ! µ

+
µ

�
e

+
e

� shown as a function of the dielectron and of the
dimuon invariant masses (blue and red solid curves respectively).

Source BR(⌘0 ! µ

+

µ

�
e

+

e

�) · 107

this work [P 6

1

] 6.80+1.31
�1.12

this work [P 1

1

] 6.25+0.76
�0.66

QED 3.21

Experimental measurements not seen

Table 6. Branching ratio predictions for ⌘

0 ! µ

+
µ

�
e

+
e

�.

the ⇢ and the !, respectively (red solid curve). Indistinguishable, both curves integrate the
same BR. Our predictions are presented in table 6 without, in this case, any experimental
reference to compare with. The effect of the TFF increases by a factor of about 2 the BR
respect to the QED estimate, which is much notorious than in ⌘ ! e

+

e

�
µ

+

µ

�.
The decay spectra for ⌘

0 ! e

+

e

�
e

+

e

� and ⌘

0 ! µ

+

µ

�
µ

+

µ

� shown in figure 10 (left
and right panels respectively) have been computed by taking eq. (4.4) into account. We
have represented the contributions of the direct diagram (green solid curve), the exchange
diagram expressed in terms of the variable of the direct diagram (red dotted curve), the
interference term (blue dotted curve) and lastly the total distribution (black dotted line).
One interesting feature concerning phase space is that the electronic mode (left panel) is
clearly sensitive to the intermediate vector resonances while the muonic (right panel) is
basically not. Our predictions are presented in table 7 which also reflect the tendency that
the effect of the TFF is sizable and larger than for the case of the ⌘. In particular, the
BR of ⌘0 ! e

+

e

�
e

+

e

� and ⌘

0 ! µ

+

µ

�
µ

+

µ

� have increased by 20% and by a factor of 2,
respectively. On the experimental side, we neither have an observation to compare with,
while on the theory side we have only found the predictions given in ref. [43] with which
we are in good agreement for the cases of having two identical dilepton pairs in the final
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Figure 10. Different contributions to the dielectron and the dimuon invariant masses distribution
for ⌘

0 ! e

+
e

�
e

+
e

� (left) and ⌘

0 ! µ

+
µ

�
µ

+
µ

� (right), respectively. Direct diagram (green solid
curve), exchange diagram (red dotted curve), interference term (blue dotted curve) and the total
distribution (black dotted curve) are displayed with respect to one invariant mass of the direct
diagram.

Source TFF
BR(⌘0 ! e

+

e

�
e

+

e

�) · 106 BR(⌘0 ! µ

+

µ

�
µ

+

µ

�) · 108

direct+exch inter direct+exch inter

This work
factorisation

P

6

1

2.15+0.34
�0.29 �0.03 2.19+0.22

�0.18 �0.44

P

1

1

2.09+0.27
�0.24 �0.01 2.06+0.15

�0.14 �0.41

QED 1.75 �0.01 0.98 �0.11

Exp. measurements not seen not seen

Table 7. Branching ratio predictions for ⌘

0 ! e

+
e

�
e

+
e

� and ⌘

0 ! µ

+
µ

�
µ

+
µ

�.

state, while we are slightly below for ⌘

0 ! µ

+

µ

�
e

+

e

�.
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We have analyzed the π0, η and η’ single and double 
Dalitz decays by means of a data-driven model-independent 
approach based on the use of rational approximants

We have obtained accurate values of the corresponding 
dilepton invariant mass spectra and branching ratios

More experimental data would be desirable
(BESIII, BELLE?, KLOE, WASA) to further improve this method

● Summary and Conclusions

The π0, η and η’ transition form factors were obtained from 
experimental data at low and intermediate energies in the 
space-like region



● Summary and Conclusions
Decay This work Experimental value [1] n�

⇡

0 ! e

+

e

�
� 1.169(1)% 1.174(35)% 0.15

⌘ ! e

+

e

�
� 6.61(59) · 10�3 6.90(40) · 10�3 0.41

⌘ ! µ

+

µ

�
� 3.27(56) · 10�4 3.1(4) · 10�4 0.25

⌘

0 ! e

+

e

�
� 4.38(31) · 10�4 4.69(20)(23) · 10�4 0.49

⌘

0 ! µ

+

µ

�
� 0.74(5) · 10�4 1.08(27) · 10�4 1.24

⇡

0 ! e

+

e

�
e

+

e

� 3.36689(5) · 10�5 3.34(16) · 10�5 0.17
⌘ ! e

+

e

�
e

+

e

� 2.71(2) · 10�5 2.4(2)(1) · 10�5 0.66
⌘ ! µ

+

µ

�
µ

+

µ

� 3.98(15) · 10�9

< 3.6 · 10�4

⌘ ! e

+

e

�
µ

+

µ

� 2.39(7) · 10�6

< 1.6 · 10�4

⌘

0 ! e

+

e

�
e

+

e

� 2.14(45) · 10�6 not seen
⌘

0 ! µ

+

µ

�
µ

+

µ

� 1.69(35) · 10�8 not seen
⌘

0 ! e

+

e

�
µ

+

µ

� 6.39(87) · 10�7 not seen

Table 8. Central final branching ratio predictions as a combined weighted average of the results
presented. Errors are symmetrised. n� stands for the number of standard deviations the measured
results are from our predictions.

where Mij = (qi + qj)2 and Mijk = (qi + qj + qk)2. In the case that concerns us, B reads
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where m` is the lepton mass and the boundary of the physical allowed region is such that
fulfils B = 0. Ref. [69] points out that the choice of variables M

2
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