Partial wave analysis of $\pi\pi$ scattering below 2 GeV

V. Nazari^a P. Bydžovský^b, R. Kamiński^a

^aInstitute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland ^bNuclear Physics Institute, ASCR, Řež/Prague, Czech Republic

> 14th International Workshop on Meson Production Kraków, Poland

> > 2-7 June 2016

Outline

- 2 Why it is so important?
- 3 How to solve it?
- 4 Method
- 5 Results of S and P waves
- 6 D and F wave amplitudes
 - Results of D and F waves

8 Conclusions

Definition of the problem

Lack of correct partial wave amplitudes for D and F waves in the $I^G J^{PC} = 0^+ 2^{++}$ and the $1^+ 3^{--}$ sectors to study the f_2 and ρ_3 mesons respectively.

The Main Problems:

- Lack of crossing symmetry condition.
- Unsuitable behavior of phase shift in vicinity of the $\pi\pi$ threshold.

Definition of the problem

Lack of correct partial wave amplitudes for D and F waves in the $I^G J^{PC} = 0^+ 2^{++}$ and the $1^+ 3^{--}$ sectors to study the f_2 and ρ_3 mesons respectively.

The Main Problems:

- Lack of crossing symmetry condition.
- Unsuitable behavior of phase shift in vicinity of the $\pi\pi$ threshold.

Similar problems for S and P waves have been derived and presented in: Phys. Rev. D 83 (2011) 074004

• Further analysis presented a very precise determination for position of the σ pole in: Phys. Rev. Lett. 107 (2011) 072001

Proof of the results by unitary multi-channel ππ scattering amplitudes: Phys. Rev. D 90, (2014) 116005

Definition of the problem

Lack of correct partial wave amplitudes for D and F waves in the $I^G J^{PC} = 0^+ 2^{++}$ and the $1^+ 3^{--}$ sectors to study the f_2 and ρ_3 mesons respectively.

The Main Problems:

- Lack of crossing symmetry condition.
- Unsuitable behavior of phase shift in vicinity of the $\pi\pi$ threshold.

Similar problems for S and P waves have been derived and presented in: Phys. Rev. D 83 (2011) 074004

• Proof of the results by unitary multi-channel $\pi\pi$ scattering amplitudes: Phys. Rev. D 90, (2014) 116005

Further analysis presented a very precise determination for position of the σ pole in: Phys. Rev. Lett. 107 (2011) 072001

• Old parameterizations are still used.

• Old parameterizations are still used.

• Specifying the dominant and ineffective states.

- Old parameterizations are still used.
- Specifying the dominant and ineffective states.
- Precise parameterizations of $\pi\pi$ amplitudes is crucial:
 - When high precision of the final state interactions is required. In analyses of the $\pi\pi$ final state interactions in the heavy mesons decays (e.g. B or $D \to M\pi\pi$ where M is K or π)
 - To describe spectrum of light mesons decaying into $\pi\pi$ pairs.

- Old parameterizations are still used.
- Specifying the dominant and ineffective states.
- Precise parameterizations of $\pi\pi$ amplitudes is crucial:
 - When high precision of the final state interactions is required. In analyses of the $\pi\pi$ final state interactions in the heavy mesons decays (e.g. *B* or $D \rightarrow M\pi\pi$ where *M* is *K* or π)
 - To describe spectrum of light mesons decaying into $\pi\pi$ pairs.
- Photoproduction of exotic mesons The CLAS12 Detector at Jefferson Lab.

- Old parameterizations are still used.
- Specifying the dominant and ineffective states.
- Precise parameterizations of $\pi\pi$ amplitudes is crucial:
 - When high precision of the final state interactions is required. In analyses of the $\pi\pi$ final state interactions in the heavy mesons decays (e.g. *B* or $D \rightarrow M\pi\pi$ where *M* is *K* or π)
 - To describe spectrum of light mesons decaying into $\pi\pi$ pairs.
- Photoproduction of exotic mesons The CLAS12 Detector at Jefferson Lab.

• Resonance contributions of poles and zeros on the Riemann surface.

The list of contributing resonant states for the D0 wave is according to the latest issue of PDG. f₂(1270), f₂(1430), f₂(1525), f₂(1640), f₂(1810), f₂(1910), f₂(1950), f₂(2010), f₂(2150), f₂(2300), f₂(2340), f₂(1565)

- Resonance contributions of poles and zeros on the Riemann surface.
- The list of contributing resonant states for the D0 wave is according to the latest issue of PDG. f₂(1270), f₂(1430), f₂(1525), f₂(1640), f₂(1810), f₂(1910), f₂(1950), f₂(2010), f₂(2150), f₂(2300), f₂(2340), f₂(1565)
- For the F1 wave only one resonant state $\rho_3(1690)$ has been considered. $\rho_3(1990)$

- Resonance contributions of poles and zeros on the Riemann surface.
- The list of contributing resonant states for the D0 wave is according to the latest issue of PDG. f₂(1270), f₂(1430), f₂(1525), f₂(1640), f₂(1810), f₂(1910), f₂(1950), f₂(2010), f₂(2150), f₂(2300), f₂(2340), f₂(1565)
- For the F1 wave only one resonant state $\rho_3(1690)$ has been considered. $\rho_3(1990)$
- Channels have been considered for D wave: $\pi\pi$, $2\pi 2\pi$, $K\bar{K}$, $\eta\eta$.

- Resonance contributions of poles and zeros on the Riemann surface.
- The list of contributing resonant states for the D0 wave is according to the latest issue of PDG. f₂(1270), f₂(1430), f₂(1525), f₂(1640), f₂(1810), f₂(1910), f₂(1950), f₂(2010), f₂(2150), f₂(2300), f₂(2340), f₂(1565)
- For the F1 wave only one resonant state $\rho_3(1690)$ has been considered. $\rho_3(1990)$
- Channels have been considered for D wave: $\pi\pi$, $2\pi 2\pi$, $K\bar{K}$, $\eta\eta$.
- Channels have been considered for F wave: $\pi\pi$, $2\pi 2\pi$, $\omega\pi$, $K\bar{K}$.

- Resonance contributions of poles and zeros on the Riemann surface.
- The list of contributing resonant states for the D0 wave is according to the latest issue of PDG. f₂(1270), f₂(1430), f₂(1525), f₂(1640), f₂(1810), f₂(1910), f₂(1950), f₂(2010), f₂(2150), f₂(2300), f₂(2340), f₂(1565)
- For the F1 wave only one resonant state $\rho_3(1690)$ has been considered. $\rho_3(1990)$
- Channels have been considered for D wave: $\pi\pi$, $2\pi 2\pi$, $K\bar{K}$, $\eta\eta$.
- Channels have been considered for F wave: $\pi\pi$, $2\pi 2\pi$, $\omega\pi$, $K\bar{K}$.
- Utilizing formulas for analytical continuations of the S-matrix elements.

- Resonance contributions of poles and zeros on the Riemann surface.
- The list of contributing resonant states for the D0 wave is according to the latest issue of PDG. f₂(1270), f₂(1430), f₂(1525), f₂(1640), f₂(1810), f₂(1910), f₂(1950), f₂(2010), f₂(2150), f₂(2300), f₂(2340), f₂(1565)
- For the F1 wave only one resonant state ρ₃(1690) has been considered. ρ₃(1990)
- Channels have been considered for D wave: $\pi\pi$, $2\pi 2\pi$, $K\bar{K}$, $\eta\eta$.
- Channels have been considered for F wave: $\pi\pi$, $2\pi 2\pi$, $\omega\pi$, $K\bar{K}$.
- Utilizing formulas for analytical continuations of the S-matrix elements.
- The matrix elements S_{ij} of the N -channel S matrix (i, j = 1, 2, ..., N) are expressed via the Jost matrix determinant, $d(k_1, k_2, ..., k_N)$ $(k_i$ are the channel momenta), using the Le Couteur-Newton relations.

- Resonance contributions of poles and zeros on the Riemann surface.
- The list of contributing resonant states for the D0 wave is according to the latest issue of PDG. f₂(1270), f₂(1430), f₂(1525), f₂(1640), f₂(1810), f₂(1910), f₂(1950), f₂(2010), f₂(2150), f₂(2300), f₂(2340), f₂(1565)
- For the F1 wave only one resonant state $\rho_3(1690)$ has been considered. $\rho_3(1990)$
- Channels have been considered for D wave: $\pi\pi$, $2\pi 2\pi$, $K\bar{K}$, $\eta\eta$.
- Channels have been considered for F wave: $\pi\pi$, $2\pi 2\pi$, $\omega\pi$, $K\bar{K}$.
- Utilizing formulas for analytical continuations of the S-matrix elements.
- The matrix elements S_{ij} of the N -channel S matrix (i, j = 1, 2, ...N) are expressed via the Jost matrix determinant, $d(k_1, k_2, ...k_N)$ $(k_i$ are the channel momenta), using the Le Couteur-Newton relations.

- The Jost determinant is considered in a separable form $d = d_{bgr} d_{res}$.
 - The resonance part is described by the multi-channel Breit-Wigner form:

$$d_{res}(s) = \prod_{r} \left[M_{r}^{2} - s - i \sum_{i=1}^{N} \rho_{ri}^{2J+1} R_{ri} f_{ri}^{2} \right]$$
$$R_{ri} = \frac{9 + \frac{3}{4} \left(\sqrt{M_{r}^{2} - s_{i}} r_{ri} \right)^{2} + \frac{1}{16} \left(\sqrt{M_{r}^{2} - s_{i}} r_{ri} \right)^{4}}{9 + \frac{3}{4} \left(\sqrt{s - s_{i}} r_{ri} \right)^{2} + \frac{1}{16} \left(\sqrt{s - s_{i}} r_{ri} \right)^{4}}$$

- The Jost determinant is considered in a separable form $d = d_{bgr} d_{res}$.
 - The resonance part is described by the multi-channel Breit-Wigner form:

$$d_{res}(s) = \prod_{r} \left[M_{r}^{2} - s - i \sum_{i=1}^{N} \rho_{ri}^{2J+1} R_{ri} f_{ri}^{2} \right]$$
(1)
$$R_{ri} = \frac{9 + \frac{3}{4} \left(\sqrt{M_{r}^{2} - s_{i}} r_{ri} \right)^{2} + \frac{1}{16} \left(\sqrt{M_{r}^{2} - s_{i}} r_{ri} \right)^{4}}{9 + \frac{3}{4} \left(\sqrt{s - s_{i}} r_{ri} \right)^{2} + \frac{1}{16} \left(\sqrt{s - s_{i}} r_{ri} \right)^{4}}$$
(2)

The background part d_{bgr}:which represents mainly an influence of neglected channels and resonances.
 For D wave:

$$d_{bgr} = \exp\left[-i\sum_{i=1}^{4} \left(\sqrt{\frac{s-s_i}{s}}\right)^{s} (a_i + ib_i)\right]$$
(3)

For F wave: $\int \sqrt{7/2}$

$$d_{bgr} = \exp\left[-i\left(\sqrt{\frac{s-s_i}{s}}\right)^{1/2}\left(a_{\alpha} + \frac{s-s_i}{s_i}a_{\beta} + \left(\frac{s-s_i}{s_i}\right)^2a_{\gamma}\right)\right]$$
(4)

- The Jost determinant is considered in a separable form $d = d_{bgr} d_{res}$.
 - The resonance part is described by the multi-channel Breit-Wigner form:

$$d_{res}(s) = \prod_{r} \left[M_{r}^{2} - s - i \sum_{i=1}^{N} \rho_{ri}^{2J+1} R_{ri} f_{ri}^{2} \right]$$
(1)
$$R_{ri} = \frac{9 + \frac{3}{4} \left(\sqrt{M_{r}^{2} - s_{i}} r_{ri} \right)^{2} + \frac{1}{16} \left(\sqrt{M_{r}^{2} - s_{i}} r_{ri} \right)^{4}}{9 + \frac{3}{4} \left(\sqrt{s - s_{i}} r_{ri} \right)^{2} + \frac{1}{16} \left(\sqrt{s - s_{i}} r_{ri} \right)^{4}}$$
(2)

The background part d_{bgr}:which represents mainly an influence of neglected channels and resonances.
 For D wave:

$$d_{bgr} = \exp\left[-i\sum_{i=1}^{4} \left(\sqrt{\frac{s-s_i}{s}}\right)^3 (a_i + ib_i)\right]$$
(3)

For F wave: $d_{bgr} = \exp\left[-i\left(\sqrt{\frac{s-s_i}{s}}\right)^{7/2} \left(a_{\alpha} + \frac{s-s_i}{s_i}a_{\beta} + \left(\frac{s-s_i}{s_i}\right)^2 a_{\gamma}\right)\right]$ (4)

Dispersion relations with imposed crossing symmetry

Crossing Symmetry:

$$\overrightarrow{\boldsymbol{T}_{s}}(s,t) = \widehat{\boldsymbol{C}}_{st} \overrightarrow{\boldsymbol{T}_{t}}(t,s)$$

Once-subtracted Dispersion Relations:

$$\operatorname{Re} f_{\ell}^{I}(s)^{out} = \sum_{l'=0}^{2} C_{st}^{ll'} a_{0}^{l'} + \sum_{l'=0}^{2} \sum_{\ell'=0}^{3} \int_{4m_{\pi}^{2}}^{S_{max}} ds' \mathcal{K}_{\ell\ell'}^{ll'}(s,s') \operatorname{Im} f_{\ell'}^{l'}(s')^{in} + d_{\ell}^{I}(s),$$

"Subtracting term" "Kernel term" "Driving term"
 $a_{0}^{l'}$ is Subtracting constant = \overrightarrow{T}_{s} ($s = 4m_{\pi}^{2}, t = 0$)

Dispersion relations with imposed crossing symmetry

Crossing Symmetry:

$$\overrightarrow{\boldsymbol{T}_{s}}(s,t) = \widehat{\boldsymbol{C}}_{st} \overrightarrow{\boldsymbol{T}_{t}}(t,s)$$

Once-subtracted Dispersion Relations:

$$\operatorname{Re} f_{\ell}^{I}(s)^{out} = \sum_{l'=0}^{2} C_{st}^{II'} a_{0}^{l'} + \sum_{l'=0}^{2} \sum_{\ell'=0}^{3} \int_{4m_{\pi}^{2}}^{S_{max}} ds' \mathcal{K}_{\ell\ell'}^{II'}(s,s') \operatorname{Im} f_{\ell'}^{I'}(s')^{in} + d_{\ell}^{I}(s),$$

"Subtracting term" "Kernel term" "Driving term"
 $a_{0}^{I'}$ is Subtracting constant = $\overrightarrow{T}_{s}^{s}$ ($s = 4m_{\pi}^{2}, t = 0$)

 $\operatorname{Re} f_{\ell}^{I}(s)^{out} - \operatorname{Re} f_{\ell}^{I}(s)^{in} \longrightarrow 0$

Dispersion relations with imposed crossing symmetry

Crossing Symmetry:

$$\overrightarrow{\boldsymbol{T}}_{\boldsymbol{s}}(s,t) = \hat{\boldsymbol{C}}_{st} \overrightarrow{\boldsymbol{T}}_{\boldsymbol{t}}(t,s)$$

Once-subtracted Dispersion Relations:

$$\operatorname{Re} f_{\ell}^{I}(s)^{out} = \sum_{l'=0}^{2} C_{st}^{II'} a_{0}^{l'} + \sum_{l'=0}^{2} \sum_{\ell'=0}^{3} \int_{4m_{\pi}^{2}}^{S_{max}} ds' \mathcal{K}_{\ell\ell'}^{II'}(s,s') \operatorname{Im} f_{\ell'}^{I'}(s')^{in} + d_{\ell}^{I}(s),$$

"Subtracting term" "Kernel term" "Driving term"
 $a_{0}^{I'}$ is Subtracting constant = \overrightarrow{T}_{s} ($s = 4m_{\pi}^{2}, t = 0$)

$$\operatorname{Re} f_{\ell}^{\prime}(s)^{out} - \operatorname{Re} f_{\ell}^{\prime}(s)^{in} \longrightarrow 0$$

S and P wave amplitudes

New amplitudes fulfilled crossing symmetry very well.

S and P wave amplitudes

• New amplitudes fulfilled crossing symmetry very well.

(C) $\operatorname{Ref}_1^1(s)^{IN}$ and $\operatorname{Ref}_1^1(s)^{OUT}$ amplitude before fitting. (d) $\operatorname{Ref}_1^1(s)^{IN}$ and $\operatorname{Ref}_1^1(s)^{OUT}$ amplitude after fitting.

- S and P wave amplitudes
 - New S and P wave amplitudes very well describe the experimental data.

(e) Phase shift from threshold to 2 GeV

(f) Phase shift from threshold to 1 GeV

- S and P wave amplitudes
 - Shift of the σ pole. $617 i\,554$ MeV $449^{+14}_{-14} i289^{+14}_{-14}$ MeV
 - * Result based on ChPT and Roy-like equations $441^{+16}_{-8} i272^{+9}_{-13}$ MeV
 - * Result based on GKPY equations $445^{+25}_{-25} i278^{+22}_{-18}$ MeV

Figure : Shift of the σ pole.

Improving the paremeters for S and P waves

To improve agreement of the amplitudes with the CS the new amplitudes have been fitted to DR and to the data. The total χ^2 was composed of five parts:

$$\chi^{2} = \sum_{l=1}^{2} \chi^{2}_{Data}(\ell) + \sum_{j=1}^{3} \chi^{2}_{DR}(j)$$
(5)

where j = 1, 2, 3 itemizes the S0, P1 and S2 partial waves, respectively. Corresponding $\chi^2_{Data}(j)$ and $\chi^2_{DR}(j)$ are expressed by

$$\chi^{2}_{Data}(j) = \sum_{i=1}^{N^{j}_{\delta}} \frac{(\delta^{exp}_{i} - \delta^{th}_{i})^{2}}{(\Delta\delta^{exp}_{i})^{2}} + \sum_{i=1}^{N^{j}_{\eta}} \frac{(\eta^{exp}_{i} - \eta^{th}_{i})^{2}}{(\Delta\eta^{exp}_{i})^{2}}$$
(6)

and

$$\chi^2_{DR}(j) = \sum_{i=1}^{N_{DR}} \left(\frac{\operatorname{Re} f_{\ell}^{I}(s_i)^{out} - \operatorname{Re} f_{\ell}^{I}(s_i)^{in}}{\Delta_{DR}} \right)^2$$
(7)

Improving the paremeters for S and P waves

To improve agreement of the amplitudes with the CS the new amplitudes have been fitted to DR and to the data. The total χ^2 was composed of five parts:

$$\chi^{2} = \sum_{l=1}^{2} \chi^{2}_{Data}(\ell) + \sum_{j=1}^{3} \chi^{2}_{DR}(j)$$
(5)

where j = 1, 2, 3 itemizes the S0, P1 and S2 partial waves, respectively. Corresponding $\chi^2_{Data}(j)$ and $\chi^2_{DR}(j)$ are expressed by

$$\chi^{2}_{Data}(j) = \sum_{i=1}^{N^{j}_{\delta}} \frac{(\delta^{exp}_{i} - \delta^{th}_{i})^{2}}{(\Delta\delta^{exp}_{i})^{2}} + \sum_{i=1}^{N^{j}_{\eta}} \frac{(\eta^{exp}_{i} - \eta^{th}_{i})^{2}}{(\Delta\eta^{exp}_{i})^{2}}$$
(6)

and

$$\chi_{DR}^2(j) = \sum_{i=1}^{N_{DR}} \left(\frac{\operatorname{Re} f_{\ell}^{I}(s_i)^{out} - \operatorname{Re} f_{\ell}^{I}(s_i)^{in}}{\Delta_{DR}} \right)^2$$
(7)

S and P wave amplitudes

	χ^2	$\chi^2_{Data}(S0)$	$\chi^2_{Data}(P1)$	χ^2_{DR}
extended	1122.5	339.4	305.1	478.0
re-fitted	605.5	269.0	300.9	35.6

Table : Values of the χ^2 for the extended (before fitting) and re-fitted (after fitting) amplitudes.

Improving the paremeters for 0^+2^{++} and 1^+3^{--} sectors

To improve agreement of the amplitudes with the CS the new amplitudes have been fitted to DR and to the data. The total χ^2 was composed of ten parts:

$$\chi^{2} = \sum_{j=0}^{3} \chi^{2}_{Data}(j) + \sum_{j=0}^{3} \chi^{2}_{DR}(j)$$
(8)

where j = 0, ..., 3 itemizes all partial waves, respectively. Corresponding $\chi^2_{Data}(j)$ and $\chi^2_{DR}(j)$ are expressed by

$$\chi^{2}_{Data}(j) = \sum_{i=1}^{N^{j}_{\delta}} \frac{(\delta^{exp}_{i} - \delta^{th}_{i})^{2}}{(\Delta\delta^{exp}_{i})^{2}} + \sum_{i=1}^{N^{j}_{\eta}} \frac{(\eta^{exp}_{i} - \eta^{th}_{i})^{2}}{(\Delta\eta^{exp}_{i})^{2}}$$
(9)

and

$$\chi^2_{DR}(j) = \sum_{i=1}^{N_{DR}} \left(\frac{\operatorname{Re} f_{\ell}^{I}(s_i)^{out} - \operatorname{Re} f_{\ell}^{I}(s_i)^{in}}{\Delta_{DR}} \right)^2$$
(10)

Improving the paremeters for 0^+2^{++} and 1^+3^{--} sectors

To improve agreement of the amplitudes with the CS the new amplitudes have been fitted to DR and to the data. The total χ^2 was composed of ten parts:

$$\chi^{2} = \sum_{j=0}^{3} \chi^{2}_{Data}(j) + \sum_{j=0}^{3} \chi^{2}_{DR}(j)$$
(8)

where j = 0, ..., 3 itemizes all partial waves, respectively. Corresponding $\chi^2_{Data}(j)$ and $\chi^2_{DR}(j)$ are expressed by

$$\chi^{2}_{Data}(j) = \sum_{i=1}^{N^{j}_{\delta}} \frac{(\delta^{exp}_{i} - \delta^{th}_{i})^{2}}{(\Delta\delta^{exp}_{i})^{2}} + \sum_{i=1}^{N^{j}_{\eta}} \frac{(\eta^{exp}_{i} - \eta^{th}_{i})^{2}}{(\Delta\eta^{exp}_{i})^{2}}$$
(9)

and

$$\chi^2_{DR}(j) = \sum_{i=1}^{N_{DR}} \left(\frac{\operatorname{Re} f_{\ell}^{I}(s_i)^{out} - \operatorname{Re} f_{\ell}^{I}(s_i)^{in}}{\Delta_{DR}} \right)^2$$
(10)

• New the amplitudes for *D* and *F* waves very well describe the experimental data.

 $\pi\pi$ scattering amplitudes below 2 GeV

• New the amplitudes for *D* and *F* waves very well describe the experimental data.

Figure : Inelasticity of the D0 wave.

• New the amplitudes for *D* and *F* waves very well describe the experimental data.

• New the amplitudes for *D* and *F* waves very well describe the experimental data.

• New the amplitudes for *D* and *F* waves very well describe the experimental data.

Figure : Inelasticity of the F1 wave.

Conclusions

- Achieved the new amplitudes for *D* and *F* waves which very well describe the experimental data.
- New amplitudes fulfilled crossing symmetry very well.
- The dominant and the ineffective resonance states of $0^{+}2^{++}$ sector: States: $f_2(1270)$ $f_2(1430)$ $f_2(1525)$ $f_2(1640)$ $f_2(1810)$ $f_2(1910)$ $f_2(1950)$ $f_2(2010)$ $f_2(2150)$ $f_2(2300)$ $f_2(2340)$
- The dominant and the ineffective resonance states of 1⁺3⁻⁻ sector: States: ρ₃(1690) ρ₃(1990)
- Values of the χ^2 for re-fitted (after fitting) amplitudes: n.d.f= 891

$$\begin{array}{c|cccc} \chi^2_{Data}(S) & \chi^2_{Data}(P) & \chi^2_{Data}(D) & \chi^2_{Data}(F) & \chi^2_{DR} & \chi^2 & \chi^2/n.d.f \\ \hline 291.62 & 300.07 & 221.88 & 136.49 & 132.16 & 1082.22 & 1.21 \\ \end{array}$$

Table : Values of the χ^2 using all new wave amplitudes after fitting.

Thank you for your attention.

Conclusions

Fit No.		χ^2
1	All stated are included	346.6
	Omitted States	
2	$f_2(1270)$	5426.0
3	f ₂ (1430)	345.1
4	$f_2(1525)$	354.0
5	$f_2(1640)$	395.0
6	$f_2(1810)$	338.2
7	f ₂ (1910)	347.1
8	$f_2(1950)$	346.5
9	$f_2(2010)$	346.2
10	f ₂ (2150)	373.0
11	f ₂ (2300)	347.8
12	f ₂ (2340)	346.5
13	$f_2(1430)$ $f_2(1810)$	340.1
14	$f_2(1950)$ $f_2(2010)$ $f_2(2340)$	346.2

Table : Values of χ^2 after fitting when some specific resonance states are omitted in the D wave.

V. Nazari INP-PAS