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Abstract. The chiral expansion of the— 3r decay amplitude at NLO fails to reproduce
the recent high accuracy measurements of the Dalitz plot parametenecdhsider the
idea of employing the chiral expansion in an unphysical region sudiagrthe Adler
zero and then deducing the amplitude in the physical region using the Kreinan
dispersive formalism. We further present an extension of this formaiikich takes into
accountkK inelastic rescatteringfiects and thus provides a realistic description of the
doubleay(980), f,(980) resonancefkect. We evaluate how the influence of these reso-
nances propagates down to the low-energy decay region and shaniglsgnificant, in
particular for they — 37° decay, and improve the agreement of the predicted Dalitz plot
parameters with experiment.

1 Introduction

The fact that the masses of thed, s quarks are much smaller than 1 GeV has an essential influence
on the physics of light mesons (indeed if these masses WhneGeV the lightest meson in QCD
would be the 0* glueball). In this context; — 37 decays are key processes for the determination of
theu — d quark mass dierence. At next-to-leading order (NLO) in the low-energyrahexpansion,
the amplitude can be expressed in a very predictive formiwg the double quark mass ratio

SRR (1)

m2 — (my + my)2/4

as an overall multiplicative factor [1, 2]. Unfortunatetihe NLO amplitude fails to reproduce the
experimental values of the Dalitz plot parameters whictelimen measured quite precisely (see [3, 4]
and references therein), which indicates that higher ardieal efects must be accounted for.

A calculation of the complete NNLO amplitude has been pengxt [5] but our present knowl-
edge of theD(p®) couplings is not sfiicient for making model independent predictions. It is pilales
however, that the importa@(p®) effects are those associated with the restoration of unitarifinal-
state interactions (FShffects. This has led to the suggestion of relying on the chk@édmesion in the
subthreshold unphysical region only, where thefects are suppressed, and construct the physical
amplitude from an extrapolation based on exact unitarity amalyticity [6, 7]. A dispersive frame-
work forn — 37 was developed in refs. [2, 8] based on the classic work of Kdmat Treiman [9]. In
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this formalismrr rescattering is treated in the elastic approximation. Vésgnt here an extension
which accounts for the leading inelastitexts in7r scattering and also includgs rescattering such
that a realistic description of the role of the two light reancesay(980), fo(980) in the dispersive
integrals can be achieved.

2 The Khuri-Treiman equations with elastic unitarity

We restrict ourselves to regions of the Mandelstam planeaevtie imaginary parts of ther — zn
partial-waves with] > 2 can be neglected compared to those With 0,1 (i.e. |3, [t], [u] < 1 GeV?).

It can then be shown [2, 8] that tlyedecay amplitudes can be expressed in terms of three fusaifon
a single variable,

Tporna0(St,U) ==L [MO(S) — EM(s) + (S— U)My(t) + (S—t)M1(u) + Ma(t) + Mz(U)]

Tr-ao(stu)= —a [MO(S) + Mo(t) + Mo(U) + 5(M2(s) + Ma(t) + Mz(U))] @
where the Mandelstam variables (in the charged case) aga biys = (P + Pr-)? t = (Pr- + Pro)?,
u = (P + Pp)? and the overall factoe, = Q2m2(m2 — m?2)/3V3F2m2. The functionsM; (w),
furthermore, are analytic in the whole complex plane exéapa cut along the positive real axis>
4me2. From eq. (2), itis easy to derive the form of the three pawi@es withJ = 0, 1 corresponding
to a definite isospinl,, of one of therr pairs

My(9) =0 7= 4 (M) + Mi(9) (3)

wherex?(s) = (1 - 4mZ/s)(s — (M, + my)?)(s— (m, — m,)?) and the isospin factors aé” = V6,2,
A = 1/3, 4@ = —1. The functionsM, can be expressed as simple integrals of the functidns
(see [2]). They have left-hand cuts which extend into theglesnplane and approach infinitesimally
close to the unitarity cut but remain well separated from it.

Assuming elastic unitarity for the three partial waves

Im [M(8)] = ore((F3(9)" M)(9) (4)

(wheref! is anr — nr partial-wave) one can derive the discontinuities of thefioms M, and then,
using dispersive representations together with the Omrethad[10] arrive at the following set of
coupled integral equations for the functio¥s [2]

Mo(w) = Qo(w)[ao + wBo + w? (yo + lo(w)) ]
Mi(w) = Q1 (w) w[B1 + [1(w)] (5)
Ma(w) = Qa(w) w?[l2(w)]

where the function§ involve integrals over the left-cut functions

L mL/Q)]
|.(w)——;f s o W) (6)

(with n = 2 whenl = 0,2 andn = 1 whenl = 1) andQ,(s) are the Omnés functions associated with
the elastid = 0,2, J = 0 andl = J = 1 2w phase-shifts.



2.1 Matching with O(p*) ChPT

Dispersive Omnés representations involve a polynomiatrariness. The form used above, follow-
ing ref. [2], is chosen to depend on four polynomial paramsatg, Bo, yo, B1- This is particularly
convenient for the present purpose since all four parametan be fixed from matching conditions
with the NLO amplitude. These conditions must ensure that,

aisp(s, 1, u) — 7NO(s 1, U) = O(p°) (7

This will be implemented here in a form essentially equiméte ref. [2], but slightly more symmetric,
obtained by expanding theftiérence in eq. (7) as a polynomial$nt, u and requiring that th@(p*)
part vanishes.

3 KT equations with inelastic channels

The formalism discussed above does not account properlthéorole of thefy(980) resonance in
the dispersive integrals, which induces a strong ineli@gtin | = J = 0 zn scattering and also
ignores the role of theg(980) resonance. In order to improve on that, we must go lekglomelastic
approximation and include thiKK andnz channels in the unitarity relation. THe= 0 S-wave
rescattering will then be described by ax2 matrix involving the £r),-0 and KK),-o channels
which we callT©. Similarly, we will consider a Z 2 matrix related to thé = 1 channels;r and
(KK),-1, which will play a role as an initial-state interaction. Weacollect theS-wave isospin
violating amplitudes into two matrices

qon_( mo—nn  (KKo—nr |\ ray_ [ ml = a7 (8)
(nm)o — (KK)1  (KK)o = (KK)y)’ K+KO = 770

For illustration, the unitarity relation foF©? reads
Im[TOY] = TO g0 TOD . 7OV 51T 4 T (8 AO )T(l) (9)

and contains three contributions. In the third one, isosigitation is induced by the physickl* — K°
mass dfiference,

Ack(9) = % (9(5— an,) \J1- 42, /s— (s — 4m2,) {1 - 4m§o/s) . (10)

Correspondingly to this matrix unitarity relation, one charive a matrix Omnes generalisation of the
equation for the amplitude functidv,

Mo(w) = Qo(w) [ Po(w) + w? (Ia(w) + Ta(w))]'@1(w) (11)

and a similar one for th&l, equation. Her&®, are Omnés matrices corresponding to the scattering
matricesT() and Pg is a matrix of polynomials which will get completely detered, as in the
elastic case, from chiral matching conditions. The maitgixwhich corresponds to the third term in
the unitarity relation (9) reads

32

i () = ® ds' Aok(S) 4 1. 0)« (O 0) Oy to-1
o) = - fmﬁ e @TE () e, a2

Finally, the matrixia collects integrals over the left-cut pieces of the pamiales (analogous to
eq. (6)).



4 Results and conclusions

Concerning the left-cut parts of the partial-wave ampsidve know how to relati, to the right-cut
functionsM, (via the representation (2) of the— 37 amplitude). Similar relations can be derived,
in principle, for theKK amplitudes (which requires to consider also the cross+atlaaimplitudes).
We adopt here the simple approximation of neglecting theclef integrals involvingK K amplitudes.
As a related approximation, we perform the chiral matchifighe KK amplitudes using the LO
expressions (which have no left-hand cut).

We have solved numerically the KT equations usind an0 T-matrix obtained from simple fits
to available experimental data and imposing asymptotiditimms which insure a unique solution for
the Omnés matrix. For the= 1 T-matrix, we have used a model constrained by chiral symmetry
low energy, and by experimental information on the isoversonances (see ref. [11]).

The results for the Dalitz plot parameters are shown in Tabl@ne sees that the KT amplitudes
matched to the NLO amplitudes provide a considerable ingrmnt over the NLO amplitudes in the
physical region. This is in agreement with the findings of [8F. The table shows that including the
effects of the 1 GeV scalar resonances further improves thelmgm with experiment. Concerning
the quark mass ratio, we fir@ ~ 21.8 with the elastic KT amplitudes and essentially the samatres
with the inelastic ones. The main source of uncertaintydarises from the NNLO contributions in
the matching equations.

Table 1. n — 3x Dalitz plot parameters from the NLO chiral expansion and from elastigragidstic chirally
matched Khuri-Treiman amplitudes.

n— ntn a0 O(p* | single-ch.| coupled-ch. KLOE BESIII
a -1.328| -1.154 -1.142 | -1.095(4)| -1.128(15)
b 0.429 0.202 0.171|| 0.145(6)| 0.153(17)
d 0.089 0.094 0.097|| 0.081(7)| 0.085(16)
f 0.016 0.108 0.123|| 0.141(10)| 0.173(28)
g -0.081| -0.087 -0.088 || -0.044(16)| -

n — 77970 PDG
a +0.0142| -0.0274 -0.0337 -0.0315(15)
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