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Abstract. The chiral expansion of theη→ 3π decay amplitude at NLO fails to reproduce
the recent high accuracy measurements of the Dalitz plot parameters. We reconsider the
idea of employing the chiral expansion in an unphysical region surrounding the Adler
zero and then deducing the amplitude in the physical region using the Khuri-Treiman
dispersive formalism. We further present an extension of this formalism which takes into
accountKK̄ inelastic rescattering effects and thus provides a realistic description of the
doublea0(980), f0(980) resonance effect. We evaluate how the influence of these reso-
nances propagates down to the low-energy decay region and show thatit is significant, in
particular for theη→ 3π0 decay, and improve the agreement of the predicted Dalitz plot
parameters with experiment.

1 Introduction

The fact that the masses of theu, d, s quarks are much smaller than 1 GeV has an essential influence
on the physics of light mesons (indeed if these masses whereO(1) GeV the lightest meson in QCD
would be the 0++ glueball). In this context,η→ 3π decays are key processes for the determination of
theu − d quark mass difference. At next-to-leading order (NLO) in the low-energy chiral expansion,
the amplitude can be expressed in a very predictive form involving the double quark mass ratio

Q−2
=

m2
d − m2

u

m2
s − (md + mu)2/4

(1)

as an overall multiplicative factor [1, 2]. Unfortunately,the NLO amplitude fails to reproduce the
experimental values of the Dalitz plot parameters which have been measured quite precisely (see [3, 4]
and references therein), which indicates that higher orderchiral effects must be accounted for.

A calculation of the complete NNLO amplitude has been performed [5] but our present knowl-
edge of theO(p6) couplings is not sufficient for making model independent predictions. It is plausible,
however, that the importantO(p6) effects are those associated with the restoration of unitarity, or final-
state interactions (FSI), effects. This has led to the suggestion of relying on the chiral expansion in the
subthreshold unphysical region only, where these effects are suppressed, and construct the physical
amplitude from an extrapolation based on exact unitarity and analyticity [6, 7]. A dispersive frame-
work for η→ 3π was developed in refs. [2, 8] based on the classic work of Khuri and Treiman [9]. In
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this formalism,ππ rescattering is treated in the elastic approximation. We present here an extension
which accounts for the leading inelastic effects inππ scattering and also includesηπ rescattering such
that a realistic description of the role of the two light resonancesa0(980), f0(980) in the dispersive
integrals can be achieved.

2 The Khuri-Treiman equations with elastic unitarity

We restrict ourselves to regions of the Mandelstam plane where the imaginary parts of theηπ → ππ
partial-waves withJ ≥ 2 can be neglected compared to those withJ = 0,1 (i.e. |s|, |t|, |u| <∼ 1 GeV2).
It can then be shown [2, 8] that theη decay amplitudes can be expressed in terms of three functions of
a single variable,

Tη→π+π−π0(s, t, u) =−ǫL
[

M0(s) − 2
3 M2(s) + (s − u)M1(t) + (s − t)M1(u) + M2(t) + M2(u)

]

Tη→3π0(s, t, u) = −ǫL
[

M0(s) + M0(t) + M0(u) + 4
3(M2(s) + M2(t) + M2(u))

] (2)

where the Mandelstam variables (in the charged case) are given bys = (pπ+ + pπ− )2, t = (pπ− + pπ0)2,
u = (pπ+ + pπ0)2 and the overall factorǫL = Q−2 m2

K(m2
K − m2

π)/3
√

3F2
πm

2
π. The functionsMI(w),

furthermore, are analytic in the whole complex plane exceptfor a cut along the positive real axisw ≥
4m2
π. From eq. (2), it is easy to derive the form of the three partial-waves withJ = 0,1 corresponding

to a definite isospin,I, of one of theππ pairs

MI
J(s) = λ(I) ǫL

16π
κJ(s)(MI(s) + M̂I(s)) (3)

whereκ2(s) = (1− 4m2
π/s)(s − (mη + mπ)2)(s − (mη − mπ)2) and the isospin factors areλ(0)

=
√

6/2,
λ(1)
= 1/3, λ(2)

= −1. The functionsM̂I can be expressed as simple integrals of the functionsMI

(see [2]). They have left-hand cuts which extend into the complex plane and approach infinitesimally
close to the unitarity cut but remain well separated from it.

Assuming elastic unitarity for the three partial waves

Im [MI
J(s)] = σππ(s)( f I

J (s))∗MI
J(s) (4)

(where f I
J is aππ→ ππ partial-wave) one can derive the discontinuities of the functionsMI and then,

using dispersive representations together with the Omnès method[10] arrive at the following set of
coupled integral equations for the functionsMI [2]

M0(w) = Ω0(w)
[

α0 + wβ0 + w
2
(

γ0 + Î0(w)
)

]

M1(w) = Ω1(w)w
[

β1 + Î1(w)
]

M2(w) = Ω2(w)w2[Î2(w)
]

(5)

where the functionŝII involve integrals over the left-cut functions

ÎI(w) = −1
π

∫ ∞

4m2
π

ds′
Im [1/ΩI(s′)]
(s′)n(s′ − w)

M̂I(s′) (6)

(with n = 2 whenI = 0,2 andn = 1 whenI = 1) andΩI(s) are the Omnès functions associated with
the elasticI = 0,2, J = 0 andI = J = 1 ππ phase-shifts.



2.1 Matching with O(p4) ChPT

Dispersive Omnès representations involve a polynomial arbitrariness. The form used above, follow-
ing ref. [2], is chosen to depend on four polynomial parameters α0, β0, γ0, β1. This is particularly
convenient for the present purpose since all four parameters can be fixed from matching conditions
with the NLO amplitude. These conditions must ensure that,

T disp(s, t, u) − T NLO(s, t, u) = O(p6) . (7)

This will be implemented here in a form essentially equivalent to ref. [2], but slightly more symmetric,
obtained by expanding the difference in eq. (7) as a polynomial ins, t, u and requiring that theO(p4)
part vanishes.

3 KT equations with inelastic channels

The formalism discussed above does not account properly forthe role of thef0(980) resonance in
the dispersive integrals, which induces a strong inelasticity in I = J = 0 ππ scattering and also
ignores the role of thea0(980) resonance. In order to improve on that, we must go beyond the elastic
approximation and include theKK̄ and ηπ channels in the unitarity relation. TheI = 0 S -wave
rescattering will then be described by a 2× 2 matrix involving the (ππ)I=0 and (KK̄)I=0 channels
which we callT(0). Similarly, we will consider a 2× 2 matrix related to theI = 1 channelsηπ and
(KK̄)I=1, which will play a role as an initial-state interaction. We also collect theS -wave isospin
violating amplitudes into two matrices

T(01)
=

(

(ππ)0→ ηπ (KK̄)0→ ηπ
(ππ)0→ (KK̄)1 (KK̄)0→ (KK̄)1

)

, T(12)
=

(

ηπ+ → π+π0

K+K̄0→ π+π0

)

(8)

For illustration, the unitarity relation forT(01) reads

Im [T(01)] = T(0)∗
Σ

0 T(01)
+ T(01)∗

Σ
1 T(1)

+ T(0)∗
(

0 0
0 ∆σK

)

T(1) (9)

and contains three contributions. In the third one, isospinviolation is induced by the physicalK+−K0

mass difference,

∆σK(s) =
1
2

(

θ(s − 4m2
K+ )

√

1− 4m2
K+/s − θ(s − 4m2

K0)
√

1− 4m2
K0/s

)

. (10)

Correspondingly to this matrix unitarity relation, one canderive a matrix Omnès generalisation of the
equation for the amplitude functionM0,

M0(w) = Ω0(w)
[

P0(w) + w2
(

ÎA(w) + ÎB(w)
)]

t
Ω1(w) (11)

and a similar one for theM2 equation. HereΩI are Omnès matrices corresponding to the scattering
matricesT(I) and P0 is a matrix of polynomials which will get completely determined, as in the
elastic case, from chiral matching conditions. The matrixÎB, which corresponds to the third term in
the unitarity relation (9) reads

ÎB(w) =
32
√

6ǫL

∫ ∞

4m2
K+

ds′ ∆σK(s′)
(s′)2(s′ − w)

Ω
−1∗
0 (s′) T(0)∗(s′)

(

0 0
0 1

)

T(1)(s′) t
Ω
−1
1 (s′) . (12)

Finally, the matrixÎA collects integrals over the left-cut pieces of the partial-waves (analogous to
eq. (6)).



4 Results and conclusions

Concerning the left-cut parts of the partial-wave amplitudes, we know how to relatêMI to the right-cut
functionsMI (via the representation (2) of theη → 3π amplitude). Similar relations can be derived,
in principle, for theKK̄ amplitudes (which requires to consider also the cross-channel amplitudes).
We adopt here the simple approximation of neglecting the left-cut integrals involvingKK̄ amplitudes.
As a related approximation, we perform the chiral matching of the KK̄ amplitudes using the LO
expressions (which have no left-hand cut).

We have solved numerically the KT equations using anI = 0 T -matrix obtained from simple fits
to available experimental data and imposing asymptotic conditions which insure a unique solution for
the Omnès matrix. For theI = 1 T -matrix, we have used a model constrained by chiral symmetry, at
low energy, and by experimental information on the isovector resonances (see ref. [11]).

The results for the Dalitz plot parameters are shown in Table1. One sees that the KT amplitudes
matched to the NLO amplitudes provide a considerable improvement over the NLO amplitudes in the
physical region. This is in agreement with the findings of ref. [8]. The table shows that including the
effects of the 1 GeV scalar resonances further improves the agreement with experiment. Concerning
the quark mass ratio, we findQ ≃ 21.8 with the elastic KT amplitudes and essentially the same result
with the inelastic ones. The main source of uncertainty forQ arises from the NNLO contributions in
the matching equations.

Table 1. η→ 3π Dalitz plot parameters from the NLO chiral expansion and from elastic andinelastic chirally
matched Khuri-Treiman amplitudes.

η→ π+π−π0 O(p4) single-ch. coupled-ch. KLOE BESIII

a -1.328 -1.154 -1.142 -1.095(4) -1.128(15)
b 0.429 0.202 0.171 0.145(6) 0.153(17)
d 0.089 0.094 0.097 0.081(7) 0.085(16)
f 0.016 0.108 0.123 0.141(10) 0.173(28)
g -0.081 -0.087 -0.088 -0.044(16) –

η→ π0π0π0 PDG
α +0.0142 -0.0274 -0.0337 -0.0315(15)
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