14th International Workshop on Meson Production, Properties and Interaction KRAKÓW, POLAND, 2nd - 7th June 2016

http://meson.if.uj.edu.p

LOW-ENERGY HADRONIC CROSS SECTIONS MEASUREMENTS AT BABAR, AND IMPLICATION FOR THE G-2 OF THE MUON

Peter A. Lukin

Budker Institute of Nuclear Physics SB RAS and

Novosibirsk State University

On behalf of BABAR Collaboration

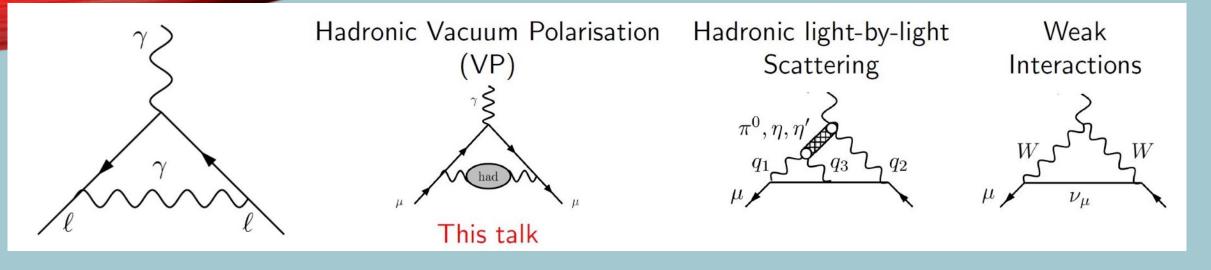
- $\Box \text{ Introduction}$
- \Box Theory of (g-2)_µ
- $\Box e^+e^- \rightarrow hadrons impact to (g-2)_{\mu}$
- BaBar ISR measurements
- Perspectives, conclusions

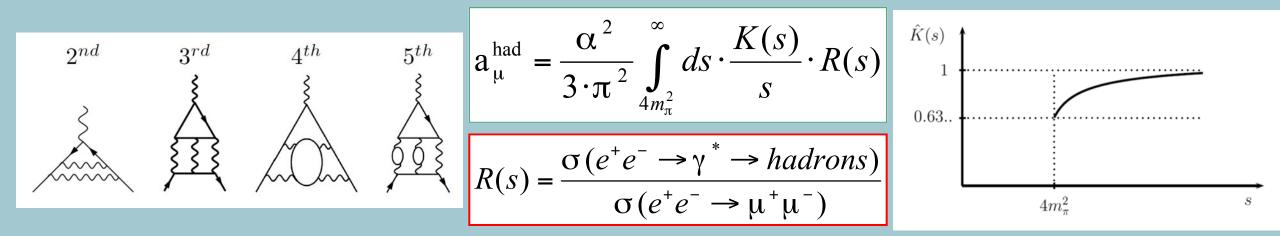
MOTIVATION: $(g-2)_{\mu}/2$

•Magnetic moment of muon: • Gyromagnetic factor g for - Dirac particles (point-like fermions): g = 2 - Higher order contributions (QFT): g \neq 2 • Muon anomaly - $a_u = (g-2)_u/2$

E821 Experiment @ BNL

$$a_{\mu}^{\text{theory}(SM)} = a_{\mu}^{QED} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{had}}$$

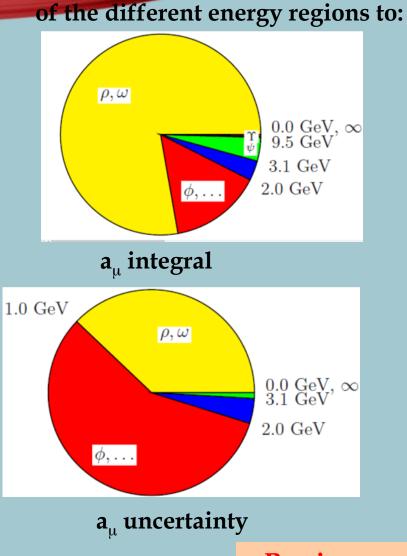

SM-to-experiment comparison [units 10^{-10}]

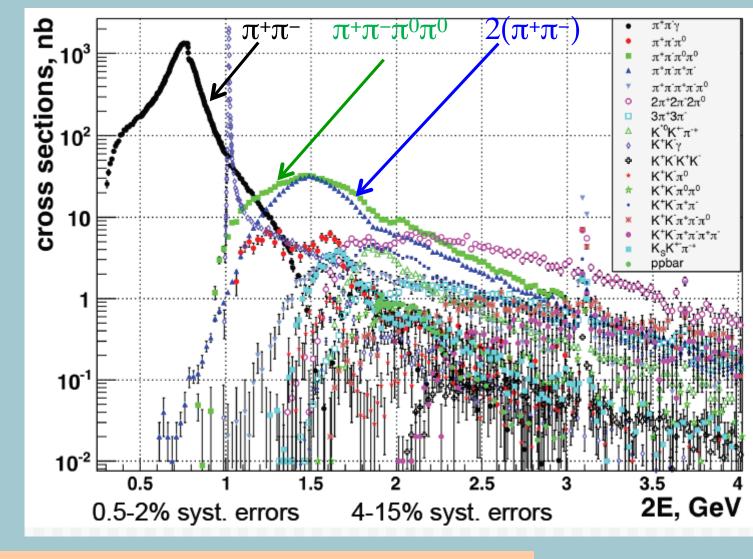

QED	11 658 471.895	\pm 0.008
Leading hadronic vacuum polarization (VP)	692.3	± 4.2
Sub-leading hadronic vacuum polarization	-9.8	\pm 0.1
Hadronic light-by-light	10.5	\pm 2.6
Weak (incl. 2-loops)	15.4	\pm 0.1
Theory	11 659 180.3	\pm 4.2 \pm 2.6
Experiment [E821 @ BNL]	11 659 209.1	\pm 5.4 \pm 3.3
Exp. – theory	+28.8	± 8.0

G.W. Bennett et al. (E821), PRD 73, 072003 (2006)

 $a_{\mu}^{EXP} - a_{\mu}^{SM} = 3.6\sigma$ (M. Davier et al., EPJC71(2011)1515)

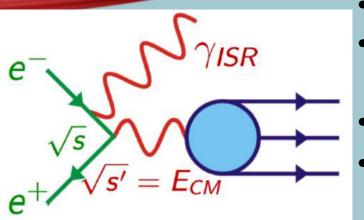
THEORY OF (g-2)_{\mu}/2




Low energy contributions are important! Experimental input is needed!

$e^+e^- \rightarrow hadrons impact to (g-2)_{\mu}/2$

Contributions

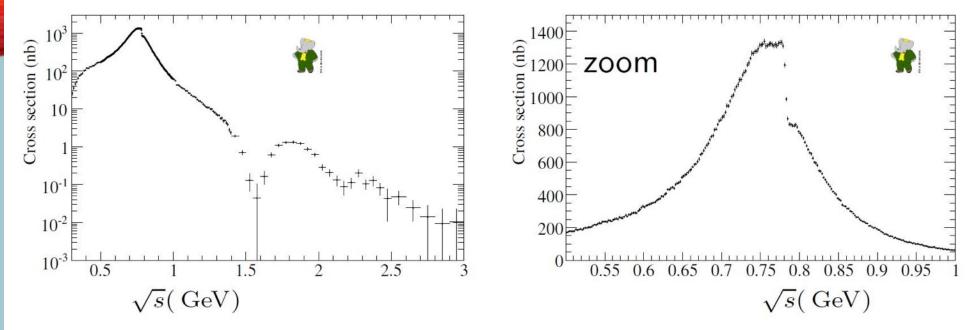

BaBar ISR measurements

Precise measurements of σ_{had} **in 1 < E**_{cm} < 2 GeV are needed

ISR - Inifial State Radiation

- Optimal use of available luminosity
- Covers whole energy range with the same detector conditions and analysis
 - Asymmetric $e^+e^- \Rightarrow$ good efficiency down to threshold If the whole final state (γ + hadrons) is observed \Rightarrow overconstrained kinematic fit \Rightarrow powerful background noise rejection

$$\frac{\mathrm{d}\sigma_{[e^+e^-\to f\gamma]}}{\mathrm{d}s'}(s') = \frac{2m}{s} W(s,x) \sigma_{[e^+e^-\to f]}(s') \ , \qquad \qquad x = \frac{E_\gamma}{\sqrt{s}} = 1 - \frac{s'}{s}$$


W(s,x) – "Radiator function", density of probability to radiate a photon with energy $E_{\gamma} = x \cdot \sqrt{s}$

$e^+e^- \rightarrow \pi^+\pi^-(\gamma)\gamma$

- Systematics mastered at the 10⁻³ level for first time in BaBar
- ISR y in EMC (thus: at large angle)
- Good quality tracks, particle identification (PID)
- Kinematic Fit (using only direction of ISR y)
 - Possibly including 1 additional γ: NLO!
- All efficiencies (trigger, filter, tracking, PID, fit) from data. $\pi^+\pi^-/\mu^+\mu^-$ ratio:
 - Cancelation of ee luminosity, additional ISR, VP, ISR γ efficiency
- Correct for lowest order FSR in $\mu^+\mu^-\,$ and for ISR + additional FSR, both calc. in QED and checked in data

$$R_{\exp}(s') = \frac{\sigma_{[\pi\pi\gamma(\gamma)]}(s')}{\sigma_{[\mu\mu\gamma(\gamma)]}(s')} = \frac{\sigma_{[\pi\pi(\gamma)]}^{0}(s')}{(1+\delta_{FSR}^{\mu\mu})\sigma_{[\mu\mu(\gamma)]}^{0}(s')} = \frac{R(s')}{(1+\delta_{FSR}^{\mu\mu})(1+\delta_{add,FSR}^{\mu\mu})}$$

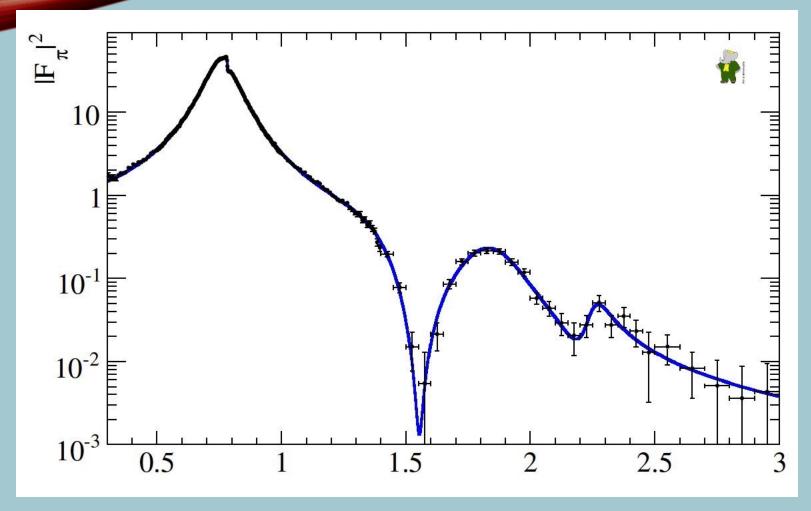
e⁺e⁻ $\pi^{-}\pi^{-}(\gamma)$ Cross Section

Bare (incl. additional FSR, VP removed) unfolded $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ 232 fb⁻¹ @ \sqrt{s} = 10.6 GeV

• Excellent precision down to threshold:

0

$$\mu_{\mu}^{\pi^{+}\pi^{-}}[2m_{\pi}, 1.8 \,\text{GeV}] = (514.1 \pm 2.2 \pm 3.1) \times 10^{-10}$$


Similar precision as combination of previous e⁺e⁻ results:

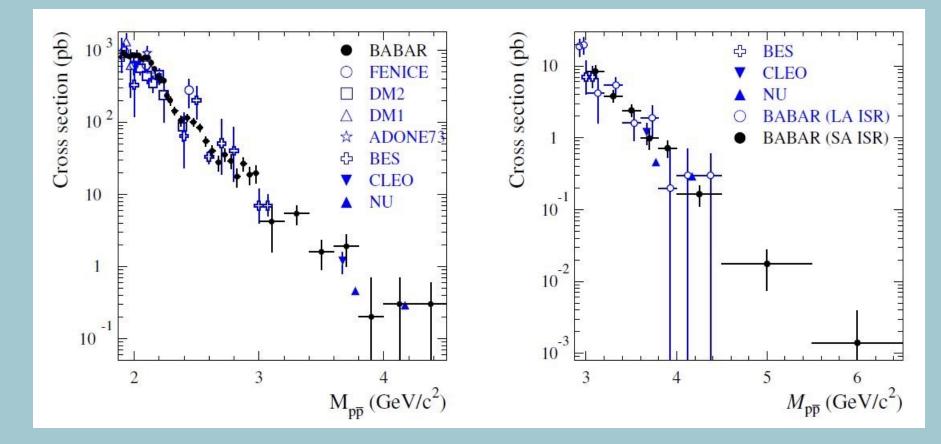
 $a_{\mu}^{\pi^{+}\pi^{-}}[2m_{\pi}, 1.8 \,\text{GeV}] = (503.5 \pm 4.5) \times 10^{-10}$

1.7 σ larger than previous e⁺e⁻ average: $\Delta = +(10.6 \pm 5.9) \times 10^{-10}$

Phys.Rev.Lett. 103 (2009) 231801 Phys.Rev.D86 (2012) 032013

$e^+e^- \rightarrow \pi^+\pi^-(\gamma)$: VDM Fit of $|F_{\pi}(s)|^2$

- |Form Factor |² fitted with a vector dominance model ρ , ρ' , ρ'' , ω'
- ρ' s described by the Gounaris-Sakurai model χ^2 /n.d.f = 334/323

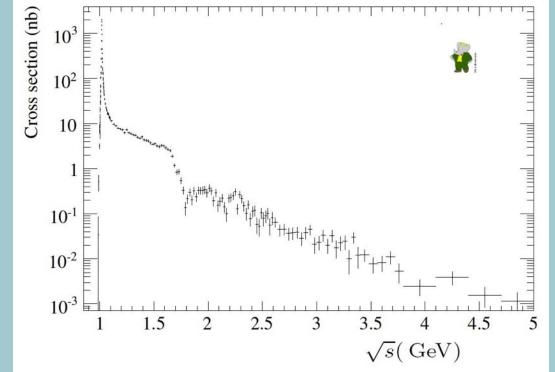

Phys.Rev.Lett. 103 (2009) 231801

Phys.Rev.D86 (2012) 032013

pp measurements @ BaBar

γ detected

γ undetected

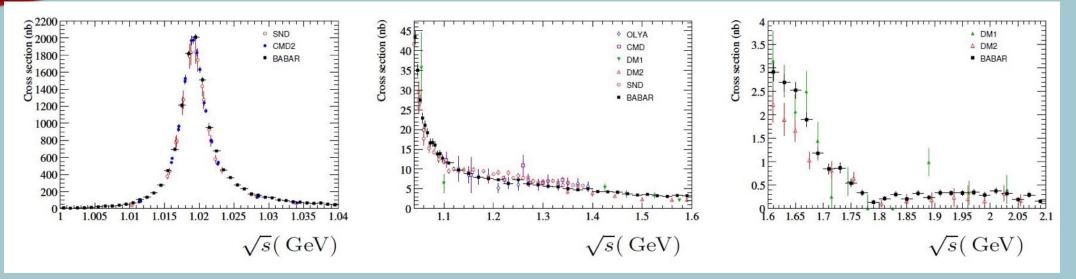

Phys. Rev. D87 (2013) 092005 Supersedes our Phys. Rev. D73 (2006) 012005

Phys. Rev. D. 88 (2013) 072009

These pp data are not used for a_u

e⁺e⁻ K⁺K⁻(γ) Cross Section

- Same method, as for $\pi^+\pi^-$:
- NLO ISR, data sample, evt generators ...
- Data driven, step-by-step evaluation of $\varepsilon^{data}/\varepsilon^{MC}$
- Resolution unfolding (almost no FSR for kaons) Malaescu arXiv:0907.3791



 $e^+e^- \rightarrow K^+K^-(\gamma)$ bare cross section (including FSR), J/ ψ and ψ (2S) removed.

Phys.Rev.D88 (2013) 032013

 $e^+e^- \rightarrow K^+K^-(\gamma)\gamma$

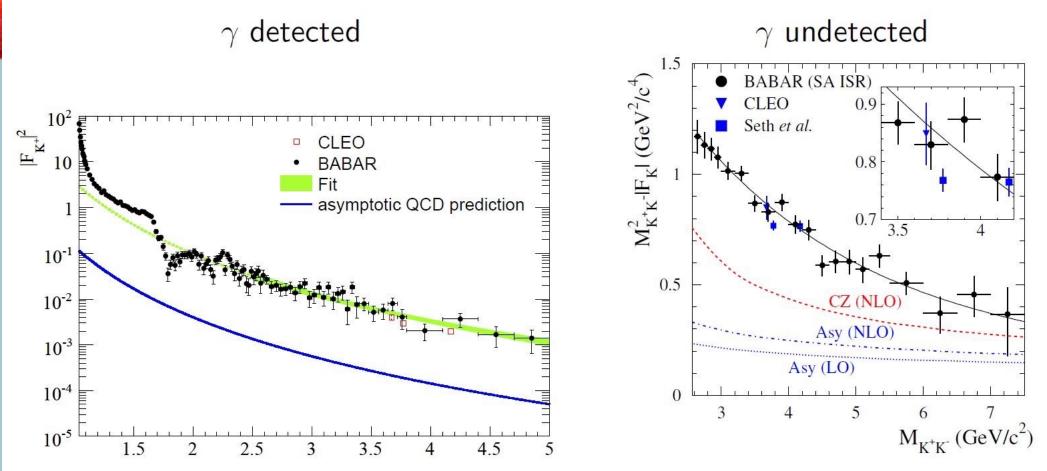
Zeoms and comparisions with previous (direct measurements) results

- Unprecedented precision in the ϕ region [1.01 1.03] GeV, of 7.3x10⁻³
- Dispersion integral:

 a_{μ}^{KK} ($\sqrt{s} < 1.8 \,\mathrm{GeV}$)

Difference:

 $(22.93 \pm 0.18_{\text{stat}} \pm 0.22_{\text{syst}} \pm 0.03_{\text{VP}}) \, 10^{-10}$


Combination of previous results:

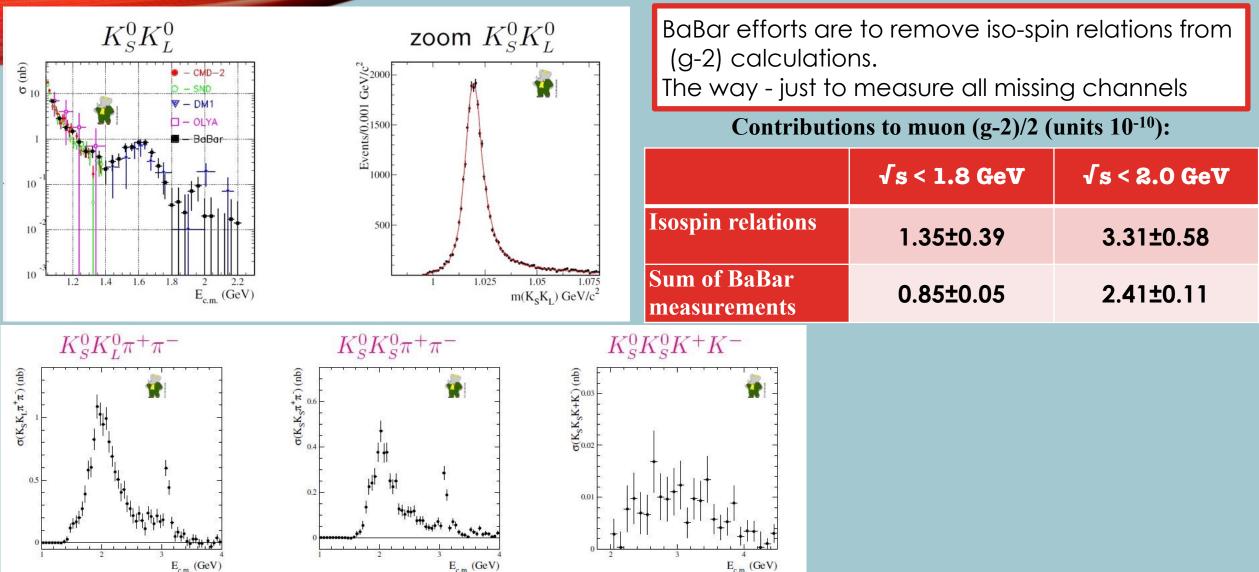
 $(21.63 \pm 0.27 \text{ stat} \pm 0.68 \text{ syst}) 10^{-10}$

 $+(1.30\pm0.79)10^{-10}$ a 1.6 σ difference

Precision better than combination of previous results by a factor 2.7 Phys.Rev.D88 (2013) 032013

$e^+e^- \rightarrow K^+K^-$ comparison with QCD

Blue: Chernyak-Zhitnitsky NLO pQCD

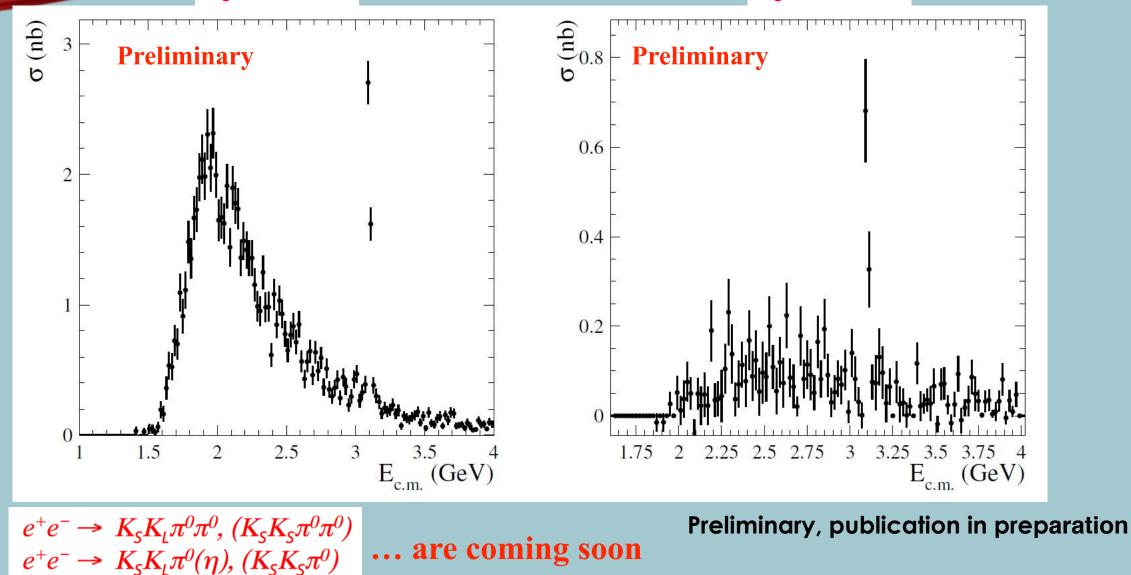

pQCD fails to describe the data.

Phys. Rev. D87 (2013) 092005

Black: fit to BaBar data Red: Chernyak-Zhitnitsky NLO pQCD pQCD with asymptotic kaon distribution amplitude.

Phys. Rev. D 92, 072008 (2015)

Processes with 2 neutral kaons


Phys. Rev. D 89, 092002 (2014)

Magenta: first measurements

 $e^- \rightarrow K_S K^+ \pi^- \pi^0 / \eta$

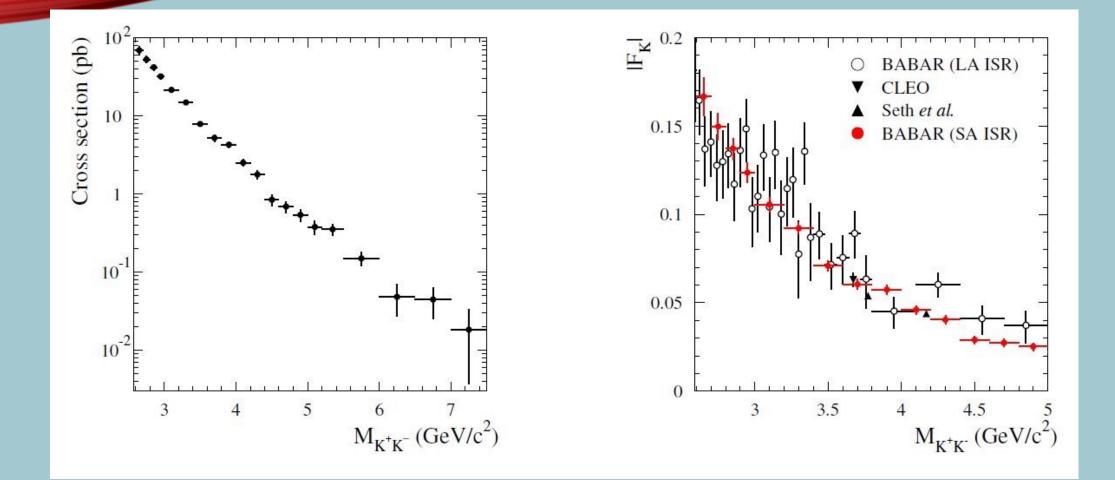
K_sK⁺π⁻π⁰

<mark>K_sK⁺</mark>π⁻η

Conclusion

• BaBar ISR programme well advanced. Most precise $\sigma(e^+e^- \rightarrow had)$, from threshold to $E_{cut} = 1.8 \text{ GeV}$ (and above)

- a_{μ} : SM prediction uncertainty $\approx 5.2 \times 10^{-10}$, $a_{\mu}^{\text{had,LO}}$ and $a_{\mu}^{\text{l-by-l}}$ dominated BNL measurement uncertainty $\approx 6.3 \times 10^{-10}$
- Study of $\rho \gamma$ mixing solves former discrepancy between e^+e^- and τ -based $a_{\mu}^{\pi^+\pi^-,LO}$ Jegerlehner Eur.Phys.J. C71 (2011) 1632
- Experiment-to-SM discrepancy still at 3 4 σ
- New measurements of a_{μ} are eagerly awaited:
 - Fermilab Nucl.Phys.Proc.Suppl. 225-227 (2012) 277-281 and
 - J-PARC Nucl.Phys.Proc.Suppl. 218 (2011) 242-246



- Here the radiator function and the collider integrated luminosity are needed
- MC simulation corrected for all known MC/data dierences.
 - ISR γ efficiency measured in data, from $\mu\mu$ -only reco'ed evts.
 - MC corrected for known NLO deciencies by comparing to PHOKHARA

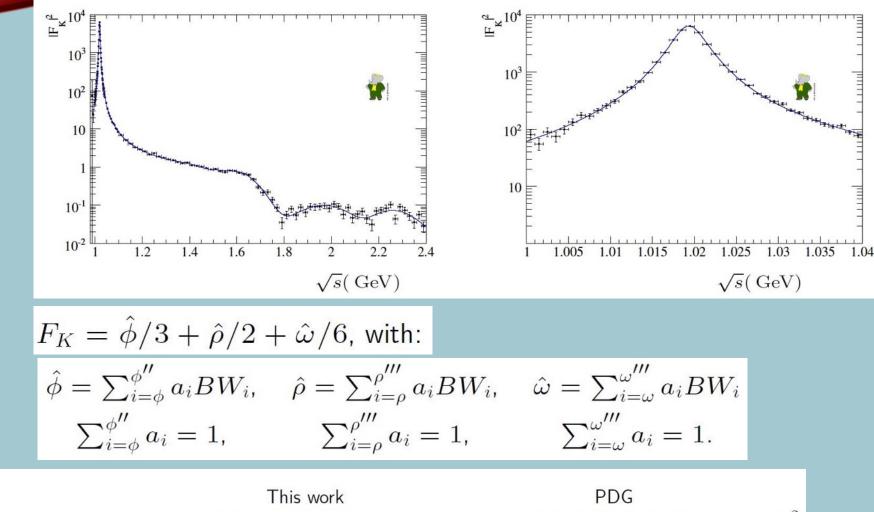
Good agreement within (0.4 ± 1.1)%; Dominated by \mathcal{L}_{ee} (± 0.9%)

Phys.Rev.Lett. 103 (2009) 231801 Phys.Rev.D86 (2012) 032013

 $e^+e^- K^+K^-$, γ undetected

Phys. Rev. D 92, 072008 (2015)

ISR: Recent LO measurements @ BaBar


- LO: hadronic final state ISR γ either detected (E^{*}_{γ} > 3 GeV) or undetected
- ISR luminosity computed from MC

	${\cal L} { m fb}^{-1}$	\sqrt{s}_{\min} GeV	$\sqrt{s}_{ m max}$ GeV	
$K_{S}^{0}K_{L}^{0}$	469		2.3	Phys. Rev. D 89, 092002 (2014)
$K^{0}_{S}K^{\overline{0}}_{L}\pi^{+}\pi^{-}$			4.0	
$K^{0}_{S}K^{\overline{0}}_{S}\pi^{+}\pi^{-}$			4.0	
$K^{\tilde{0}}_S K^{\tilde{0}}_S K^+ K^-$			4.5	
$\overline{p}p$	454		4.5	Phys. Rev. D87 (2013) 092005
$\overline{p}p$	469	3.0	6.5	Phys. Rev. D. 88 (2013) 072009
K^+K^-	469	2.6	8.0	Phys. Rev. D 92, 072008 (2015)
$K^0_S K^+ \pi^- \pi^0$	454		4.0	Preliminary
$K^0_S K^+ \pi^- \eta$				

Blue: ISR y undetected

Magenta: first measurements

$e^+e^- \rightarrow K^+K^-(\gamma)$: VDM Fit of $|F_K(s)|^2$

m_{ϕ}	=	$1019.51 \pm 0.02 \pm 0.05$	1019.455 ± 0.020	MeV/c^2	
Γ_{ϕ}	=	$4.29 \pm 0.04 \pm 0.07$	4.26 ± 0.04	MeV	
$\Gamma_{\phi}^{ee} \times \mathcal{B}(\phi \to K^+ K^-)$	=	$0.6340 \pm 0.0070_{\rm exp} \pm 0.0037_{\rm fit} \pm 0.0013_{\rm cal}$		keV	Dhye

Phys.Rev.D88 (2013) 032013

BaBar ISR measurements: present situation

 A vigorous campaign that is almost completed 	@ 10.6 GeV					
• radiation: LO: $e^+e^- \to X\gamma$ or NLO: $e^+e^- \to X\gamma(\gamma)$						
• γ detected (lower X mass), or γ undetected (higher X mass)						
 For most channels, precision improvement by a factor 	or of $pprox 3$	wrt previous averages				
$K_{S}^{0}K^{+}\pi^{-}\pi^{0}, K_{S}^{0}K^{+}\pi^{-}\eta$		Preliminary				
$K^{+}K^{-}$	γ undet.	Phys. Rev. D 92, 072008 (2015)				
$K^0_S K^0_L$, $K^0_S K^0_L \pi^+ \pi^-$, $K^0_S K^0_S \pi^+ \pi^-$, $K^0_S K^0_S K^+ K^-$		Phys. Rev. D 89, 092002 (2014)				
$\overline{p}p$	γ undet.	Phys.Rev. D88 (2013) 7, 072009				
$\overline{p}p$		Phys. Rev. D87 (2013) 092005				
K^+K^-	NLO	Phys. Rev. D88 (2013) 032013				
$\pi^+\pi^-$	NLO	Phys. Rev. Lett. 103 (2009) 231801				
		Phys. Rev. D86 (2012) 032013				
$2(\pi^{+}\pi^{-})$		Phys. Rev. D85 (2012) 112009				
$K^+K^-\pi^+\pi^-$, $K^+K^-\pi^0\pi^0$, $K^+K^-K^+K^-$		Phys. Rev. D86 (2012) 012008				
$K^{+}K^{-}\eta, K^{+}K^{-}\pi^{0}, K^{0}K^{\pm}\pi^{\mp}$		Phys. Rev.D77 (2008) 092002				
$2(\pi^+\pi^-)\pi^0, 2(\pi^+\pi^-)\eta, K^+K^-\pi^+\pi^-\pi^0, K^+K^-\pi^+\pi^-\eta$		Phys. Rev.D76 (2007) 092005				
$K^+K^-\pi^+\pi^-$, $K^+K^-\pi^0\pi^0$, $K^+K^-K^+K^-$		Phys. Rev.D76 (2007) 012008				
$A\overline{A}, A\Sigma^{0}, \Sigma^{0}\Sigma^{0}$		Phys. Rev. D76 (2007) 092006				
$3(\pi^+\pi^-), 2(\pi^+\pi^-\pi^0), K^+K^-2(\pi^+\pi^-)$		Phys. Rev.D73 (2006) 052003				
$\overline{p}p$		Phys. Rev.D73 (2006) 012005				
$2(\pi^+\pi^-), K^+K^-\pi^+\pi^-, K^+K^-K^+K^-$		Phys. Rev.D71 (2005) 052001				
$\pi^+\pi^-\pi^0$		Phys. Rev.D70 (2004) 072004				