Theoretical studies of $e^+ e^- \rightarrow K^+K^-$ photon reaction

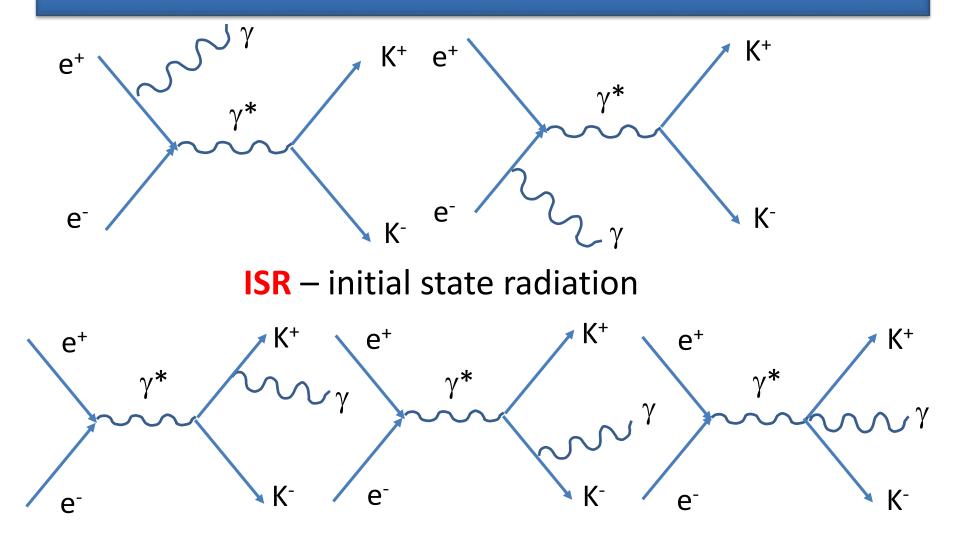
Leonard Leśniak and Michał Silarski

Institute of Physics, Jagiellonian University, Kraków

Meson2016

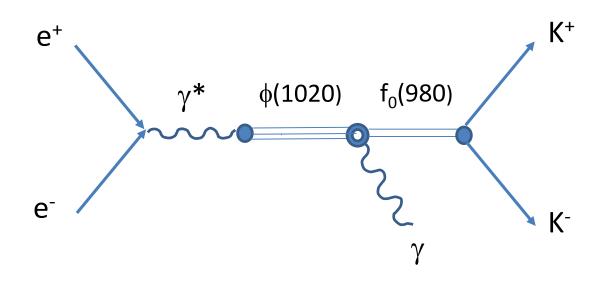
June 3. 2016

Motivation


1. The branching fraction for the $\phi(1020)$ meson decay into the **K**⁺ **K**⁻ **y** channel is yet unknown.

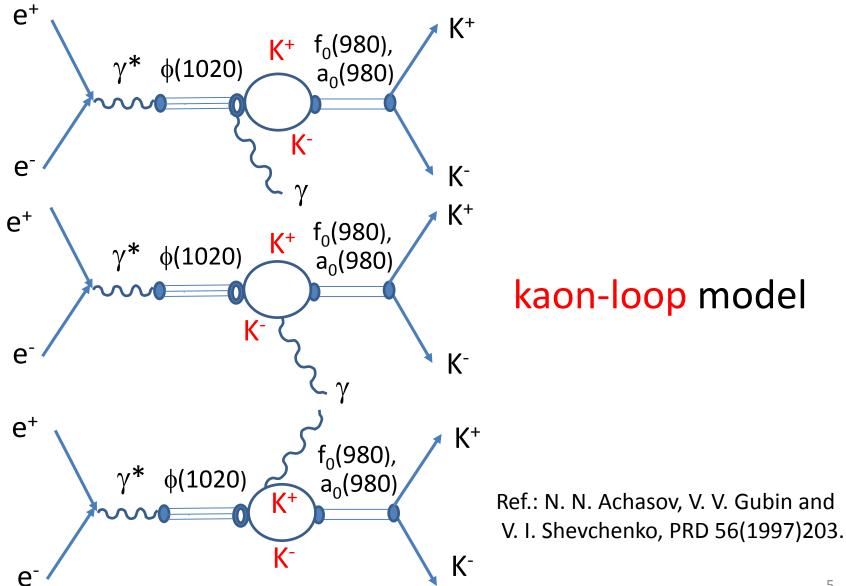
- 2. The $\phi(1020) \rightarrow \pi^+\pi^-\gamma$ branching fraction has been measured: $\Gamma(\pi^+\pi^-\gamma)/\Gamma_{total} = (4.1\pm1.3) \ 10^{-5}.$
- 3. There are also data for the decay of the $\phi(1020)$ meson into scalar resonances plus photon:

 $\Gamma(f_0(980) \gamma) / \Gamma_{total} = (3.22 \pm 0.19) 10^{-4},$ $\Gamma(a_0(980) \gamma) / \Gamma_{total} = (7.6 \pm 0.6) 10^{-5}.$


- 4. Both scalar resonances decay to the K⁺ K⁻ pairs, so one should observe the reaction $e^+ e^- \rightarrow K^+ K^- \gamma$. For the decay $\phi \rightarrow K^0 K^0 bar \gamma$ only the upper limit 1.9 10⁻⁸ is known (KLOE 2009).
- 5. Measurement of the $e^+ e^- \rightarrow \phi \rightarrow K^+ K^- \gamma$ transition could provide a new information about the K⁺ K⁻ strong interactions near threshold.

Reaction mechanisms

FSR – final state radiation


Reaction mechanisms

Ref.: G. Isidori, L. Maiani, M. Nicolaci, S. Pacetti, JHEP 0605 (2006)049.

Reaction mechanisms

Differential cross-section

Reaction:
$$e^+(p_{e^+}) e^-(p_{e^-}) \to K^+(p_{K^+}) K^-(p_{K^-}) \gamma$$
 (q)

$$d\sigma = \frac{(2\pi)^4}{2\sqrt{s(s-4m_e^2)}} |\mathsf{M}|^2 d\Phi_3$$

M - matrix element Φ_3 – phase space

5 invariants: 2 momentum

transfers:

$$s = (p_{e^+} + p_{e^-})^2$$

$$t = (p_{e^-} - q)^2$$

$$m^2 = (p_{K^+} + p_{K^-})^2$$

$$t_1 = (p_{e^-} - p_{K^-})^2$$

$$m^2_{K^-\gamma} = (p_{K^-} + q)^2$$

$$\frac{d\sigma}{dm^2 dm_{K^-\gamma}^2 dt \, dt_1} = \frac{1}{(2\pi)^4} \frac{|\mathsf{M}|^2}{16 \, s \, (s - 4m_e^2)(s - m^2)r}$$

$$r = \sqrt{-(t_1 - t_{1min})(t_1 - t_{1max})}$$

m – K⁺K⁻ effective mass, $m_{K^-\gamma}$ – K⁻ photon effective mass

Kinematical relations (1)

 θ_1 , θ_γ - K⁻ and photon **polar angles** in the e⁺e⁻ center-of-mass frame, z-axis along the e⁻ momentum

Relations:

$$\boldsymbol{t_1} \approx m_K^2 \cdot \sqrt{s} E_1^l \left(1 - v_1 \cos \boldsymbol{\Theta_1}\right)$$
$$\boldsymbol{t} \approx -\sqrt{s} \omega^l \left(1 - \cos \boldsymbol{\Theta_\gamma}\right)$$

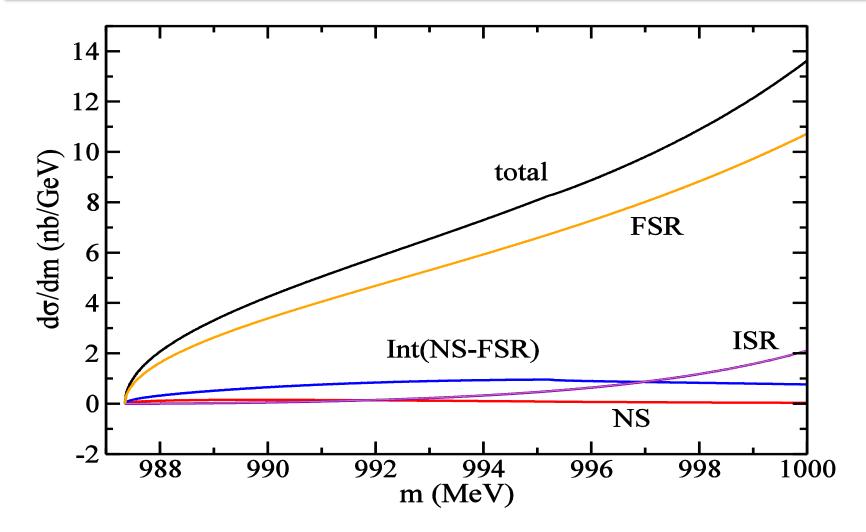
 E_1^l , ω^l are K⁻ and photon energies, v_1 is K⁻ velocity.

$$E_1^l = \frac{m^2 + m_{K^-\gamma}^2 - m_K^2}{2\sqrt{s}} \qquad \qquad \omega^l = \frac{s - m^2}{2\sqrt{s}}$$

Kinematical relations (2)

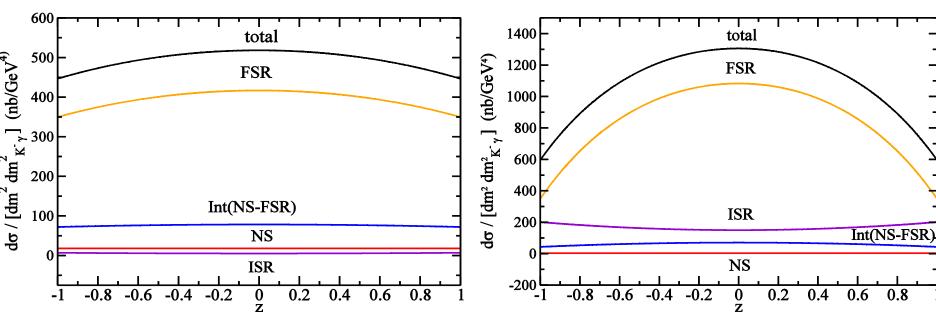
Definitions: θ_1^* - polar angle of K⁻ with respect to the photon axis in the K⁺ K⁻ center- of- mass frame,

 $z = \cos \theta_1^*$


Relation to the K⁻ γ effective mass squared $m_{K^-\gamma}^2$:

$$m_{K^-\gamma}^2 = m_K^2 + \frac{1}{2} (s - m^2)(1 - v z)$$

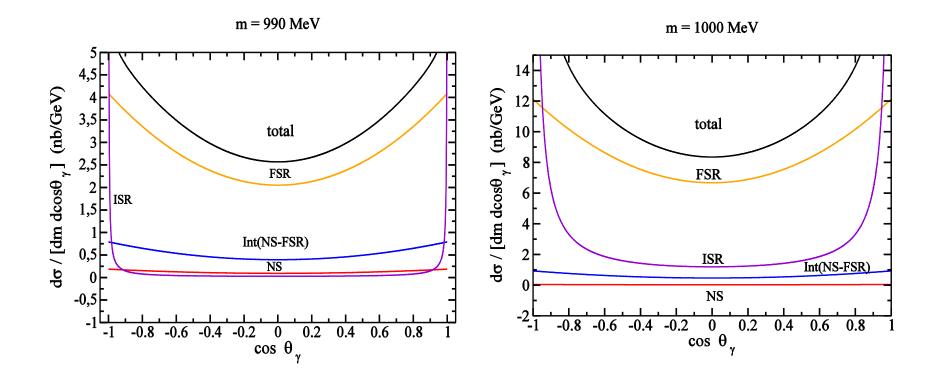
 $v = K^{-}$ velocity in the K⁺ K⁻ center of mass frame, $v = \sqrt{1 - \frac{4m_{K}^{2}}{m^{2}}}$


z=+1 corresponds to minimum of $m_{K^-\gamma}^2$, z= -1 to maximum of $m_{K^-\gamma}^2$.

K+K⁻ effective mass distributions for $45^{\circ} < \theta_{\gamma} < 135^{\circ}$

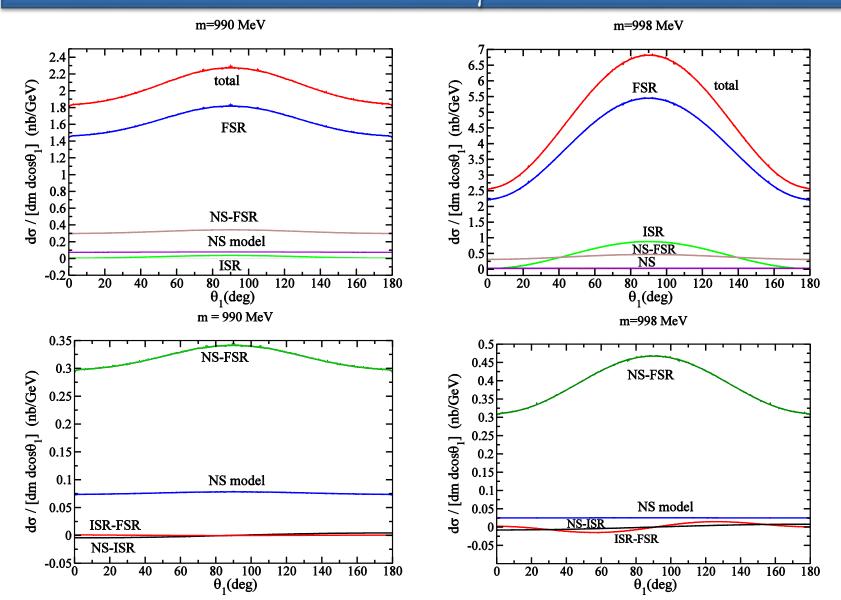
Distributions of the polar angle of K⁻ with respect to the photon axis in the K⁺ K⁻ center of mass frame

for $45^{\circ} < \theta_{v} < 135^{\circ}$



m = 990 MeV

m = 1000 MeV


 $z = \cos \theta_1^*$

Photon angular distributions

K⁻ angular distributions at fixed m

for $45^{\circ} < \theta_{\gamma} < 135^{\circ}$

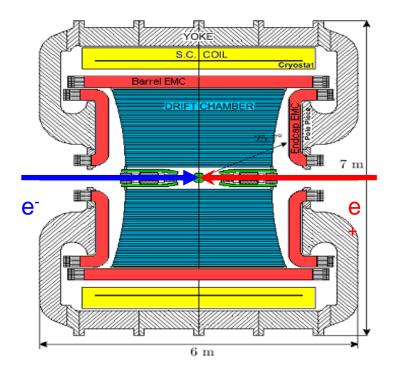
12

Integrated cross sections

The **cross sections integrated** over the K⁺K⁻ effective mass up to 1009 MeV for two photon angle ranges (units are nanobarns):

reaction mechanism 2	$24^{\circ} < \theta_{\gamma} < 156^{\circ}$	$45^{0} < \theta_{\gamma} < 135^{0}$
FSR	0.330 nb	0.238 nb
NS	0.0020 nb	0.0014 nb
Int(NS-FSR)	0.021 nb	0.015 nb
ISR	0.183 nb	0.104 nb

Experimental search for $e^+ e^- \rightarrow K^+ K^- \gamma$ reaction


This can be done with the KLOE data (analysis has already started)

* Advantages:

- very good kaon momentum determination
- high statistics

* Problems:

- Iow energy photons (< 32 MeV)</p>
 - \Rightarrow lower efficiency and energy resolution
- slow transverse momentum tracks for low K⁺K⁻ effective masses

Experimental implications

Expected number of events integrated over the K⁺K⁻ effective mass up to 1009 MeV for two photon angle ranges and for the integrated luminosity of 1.7 fb⁻¹:

reaction mechanism $24^0 < \theta_{\gamma} < 156^0$		$45^{0} < \theta_{\gamma} < 135^{0}$
FSR	5.6 10 ⁵	4.0 10 ⁵
NS	3.4 10 ³	2.4 10 ³
Int(NS-FSR)	3.6 10 ⁴	2.5 10 ⁴
ISR	3.1 10 ⁵	1.8 10 ⁵
total	9.1 10 ⁵	6.1 10 ⁵

The results of the theoretical calculations presented here can be used in experimental analyses of the $e^+ e^- \rightarrow K^+ K^- \gamma$ reaction.

They can also serve in determination of:

the K⁺ K⁻ threshold parameters of the strong interaction amplitudes

and in a better specification of the **properties** of the scalar meson resonances $f_0(980)$ and $a_0(980)$.