Outlook

TECHNISCHE

UNIVERSITÄT

MÜNCHEN

(Worst week of my life in Cracow)

Laura Fabbietti

Fundamental Questions

- Chiral Symmetry Restoration
- Equation of State of matter under Extreme Conditions
- Low energy QCD in the u-d-s sector
- Extension of the Quark model: 3 Examples

From Baryonic resonances decaying into mesons and nucleons to the Quest of Chiral Symmetry restoration

Partial Wave Analysis SU(3): non exotic states

How to confirm these states (EXTREMELY BROAD!) experimentally? Partial wave analysis

$$A(s,t) = \sum_{\beta\beta' n} A_n^{\beta\beta'}(s) Q_{\mu_1...\mu_n}^{(\beta)+} F_{\nu_1...\nu_n}^{\mu_1...\mu_n} Q_{\nu_1...\nu_n}^{(\beta')}$$

Bonn-Gatchina partial wave analysis (<u>http://pwa.hiskp.uni-bonn.de</u>) Tenergy Dependent approach, **200 data sets** fitted at the same time, **20 Millions likelihood**

Partial Wave Analysis SU(3): non exotic states

$\sqrt{s} = 1 - 2 \,\mathrm{GeV}$

V. Crede, A. Sarantsev

 $N^*(1535 - 2000) \to \pi^- + p$ $N^*(1535 - 2000) \to \eta + N$ $N^*(1535 - 2000) \to \Lambda + K$

Determination of N* mass, quantum Numbers and relative branching ratios

Partial Wave Analysis SU(3): non exotic states

$\sqrt{s} = 1 - 2 \,\mathrm{GeV}$

V. Crede

Some Resonances can be produced only in 3 body reactions

Strange Baryon perspective:

Mapping out the spectrum of Ξ , Σ^* , Λ^* baryons.

p+p data should be analysed within this framework

Vector Mesons

R. Rapp

 $\Sigma_{\rho B,M} =$

Vector mesons properties within nuclear matter under extreme conditions

Determine rho properties in the medium

Vector Meson Dominance

 $\Lambda \Lambda \Lambda$

h=N, π, K, ...

 $R=\Delta$, N(1520), a_1 , K_1 , ...

7

$$\int_{0}^{\infty} dss \Delta \rho(s) = -2\pi \alpha_{s} \langle \mathcal{O}_{4}^{SB} \rangle$$
$$\Delta \rho = \rho_{V} - \rho_{A} \quad \begin{bmatrix} \text{Weinberg '67, Das et al '67;} \\ \text{Kapusta+Shuryak '94} \end{bmatrix}$$

 $\int_0^\infty ds \,\Delta\rho(s) = f_\pi^2 m_\pi^2 = -2m_q \langle \bar{q}q \rangle$

 $\int_0^\infty ds \, \frac{\Delta \rho(s)}{s} = f_\pi^2 \ ,$

Also at ultra-relativistic colliding energies Resonances play an important role

Coupling through Mesons

Coupling through Mesons

Chiral Symmetry Restoration: a₁?

6 * 10 ⁷ evts

 ρ spectral shape does not change from pp

$$a_1^{\pm} \to \pi^+ + \pi^- + \pi^{\pm}$$

check for the a1 in pp at 13 TeV 10 9 evts

if a1 is observed -> check PbPb data against the a1vacuum hypothesis

Chiral Symmetry Restoration: a₁?

R. Rapp

How can these resonances (N^*, Σ, Δ ...) and their decays be useful to better constraint the Equation of state of matter under extreme conditions?

Equation of State of Dense and Hot Matter

' M

- evidence from Lattice of missing strange states in the low T regime
- Hyperons yields not well reproduced by HRG hadronic spectrum ⇒ underestimate by HRG calculations

- Excluded volume introduced in the model to account for the missing resonances
- Excluded Volume influences the compressibility of the hadronic gas and hence its **Equation of State**

A more complete list of Resonances will lead to a more realistic EoS But: why are the already discovered resonances not included in the hadron g_{13} yet ??

Equation of State of Hadronic Matter

Fundamental ingredient for RMF Lagrangians used for **hadronic** EoS Coupling of nucleons and hyperons at finite densities

$$\mathcal{L} = \sum_{B} \bar{\Psi}_{B} \left(i \gamma_{\mu} \partial^{\mu} - m_{B} + g_{\sigma B} \sigma - \frac{g_{\omega B} \gamma_{\mu} \omega^{\mu}}{g_{\rho B} \gamma_{\mu} t_{B}} \cdot \boldsymbol{\rho}^{\mu} \right) \Psi_{B}$$

Relevant to solve the **HYPERON Puzzle** within Neutron Stars

$$\frac{1}{3}g_{\omega N} = \frac{1}{2}g_{\omega \Lambda} = \frac{1}{2}g_{\omega \Sigma} = g_{\omega \Xi},$$
$$g_{\rho N} = \frac{1}{2}g_{\rho \Sigma} = g_{\rho \Xi},$$
$$g_{\rho \Lambda} = 0,$$
$$2g_{\phi \Lambda} = 2g_{\phi \Sigma} = g_{\phi \Xi} = -\frac{2\sqrt{2}}{3}g_{\omega N},$$

Low Energy QCD: non perturbative. $\Lambda(1405)$ and $\overline{K}N$ Finally we see kaonic bound states!!! If we connect this to Vector mesons what do we learn? The ϕ case

Low energy QCD in the u-d-s sector

T. Hyodo, K. Piscicchia

Broad resonances present below the KN threshold makes ChPT not applicable for KN interaction

Σ (1385) Λ (1405) 1500 4 4 4 5 [MeV 5 [MeV \overline{KN}

 $\Lambda(1405)$:ONLY state about which we are rather sure we have a molecular state MB

Proof: spectral shape moves around with different reactions

Lattice QCD Evidence that the A(1405) Resonance is an Antikaon-Nucleon Molecule

Phys. Rev. Lett. 114, 132002 (2015)

$$K^- N \to \Lambda \pi^-$$

Resonant and Non resonant amplitude Important to constrain the background of the $\Lambda(1405)$

Reaction mechanism included in the theoretical calculations!! Currently Experimentalists are partially doing the job by themselves

K-Nucleon interaction

Spectra are described in terms of Kmulti nucleon absorption processes only

No kaonic bound states for slow absorbed K⁻

Nucl. Phys. A, 954, 75-93 (2016).

Kaonic Bound States

A lot of wrongly interpreted results on the market Ex: FINUDA and DISTO

Kaonic Bound States

Spectra are described in terms of Kmulti nucleon absorption processes only

Nucl. Phys. A, 954, 75-93 (2016).

No kaonic bound states for <u>slow</u> absorbed K⁻

$$B_{Kpp} = 47 \pm 3(stat.)^{+6}_{-3}(sys.) \text{ MeV/c}^2$$

$$\Gamma_{Kpp} = 115 \pm 7(stat.)^{+10}_{-9}(sys.)$$

Kaonic bound states for <u>fast</u> interacting K⁻

Meson-Baryon Interaction

Kaonic hydrogen and deuterium

J. Marton

Meson-Baryon Interaction

Kaonic hydrogen and deuterium

J. Marton

+ scattering Data

Meson-Baryon Interaction

V. Mantovani-Sarti

ϕ Coupling to $ar{K}$

J. Wirth

 π -induced reactions off light and heavy targets (HADES, GSI)

D. Cabrera et al. PHYSICAL REVIEW C 67, 045203 (2003)

 $\phi/K^{-} = 0.58 \pm (0.044)^{stat} + ^{+0.059^{syst}}_{-0.061^{syst}}$

 $\phi/K^{-} = 0.63 \pm (0.057)^{stat} \pm 0.1^{syst}$

Measure them together !

Exotics states: our attempt to extend the quark models First light stuff

Exotic predictions in the light sector

C. Fischer

Exotic predictions in the light sector

C. Fischer

COMPASS coll. Phys.Rev.Lett.104:241803,2010

Diffractive 3π Production

J. Friedrich, F. Krinner

0.8

1.0 1.2 1.4

Good old $\pi_1(1600)$

ONLY exotic candidate Confirmation with a2 partner

Freed-isobar analysis: much more freedom than fixed-isobar analysis

New Method with non-fixed shapes for the amplitudes Not yet tried out on $\pi_1(1600)$

a₂(1420): The fake exotic

J. Friedrich, F. Krinner

Plublished as a resonance by COMPASS Interpreted as the signature of "scattering" in three different models

* M. Mikhasenko, B. Ketzer, and A. Sarantsev, Phys. Rev. D 91,094015 (2015).

* X. H. Liu, M. Oka, and Q. Zhao, Phys. Lett. B **753**, 297 (2016).

* F. Aceti, L. R. Dai, and E. Oset, Phys. Rev. D 94, 096015 (2016).

Why is on the PDG??

Outlook: Extending of the TUM PWA to include triangle diagrams and rescattering as waves

Exotics states X,Y,Z and Pc... The worst part of the week...

We can make use of what we have learned in SU(3)

S. Olsen et al. Rev. Mod. Phys., Vol. 90, 1, (2018)

Threshold Cusp: (a) D D D π D^* D^* D^* one-loop tree D D π D Υ \mathbf{D}^* D° D^* two-loop 0.2 ImT(b) 0.15 --- Re T 0.1 |T|0.05 0 -0.05 -0.1 -0.2 -0.1 0 0.2 0.3 0.4 0.1 $M(DD^*)-m_D-m_{D^*}$ (GeV)

Anomalous Triangle Singularity:

generates a peak in the final state if all three particles in the triangle are on-shell.

$X \to J/\psi\phi$ States (LHCb)

M. Kucharczyk

LHCb: Full amplitude fit to $B^+ \rightarrow J/\psi \phi K^+$

- Run 1, 3fb⁻¹ (4289 ± 151 candidates with minor background)
- 6D phase space: $m(\varphi K)$, helicity angles and $\Delta \varphi$ angles
- includes interferences between $B \to J/\psi K^*$, $K^* \to \phi K$ and $B \to X^0 K$, $X^0 \to J/\psi \phi$

Even with PWA one can not disentangle all the properties of the states X(4140), X(4274) incompatible with cusps or molecular bound states maybe tetraquarks 31

[PRL 118 (2017) 02203]

[PR D95 (2017) 012002]

Alternative explanation

E. Oset

Pentaquark from LHCb

Partial Wave analysis in m(K-p) and 5 angles including

 $\Lambda_b^0 \to J/\psi \Lambda^*, \Lambda^* \to pK^- \quad \Lambda_b^0 \to P_c^+K^-, P_c^+ \to J/\psi p$

If one considers only Λ^* one cannot reproduce the experimental data

State	JP	M_0 (MeV)	Γ_0 (MeV)	# Reduced	# Extended
Λ(1405)	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ⊥ 2.0	3	4
A(1520)	3/2-	15 1 9.5 ⊥ 1.0	$15.6 \perp 1.0$	5	6
Λ(1600)	$1/2^{+}$	1600	150	3	4
Λ(1670)	$1/2^{-}$	1670	35	3	4
Λ(1690)	3/2-	1690	60	5	6
∧(1800)	1/2	1800	300	4	4
Λ(1810)	$1/2^{+}$	1810	150	3	4
Λ(1820)	$5/2^{+}$	1820	80	1	6
∧(1830)	5/2-	1830	95	1	6
Λ(1890)	$3/2^{+}$	1890	100	3	6
Λ(2100)	7/2-	2100	200	1	6
Λ(2110)	5/2+	2110	200	1	6
Λ(2350)	9/2+	2350	150	0	6
Λ(2585)	5/2	≈2585	200	330	6

Pentaquark from LHCb

Partial Wave analysis in m(K-p) and 5 angles including

 $\Lambda_b^0 \to J/\psi \Lambda^*, \Lambda^* \to pK^- \quad \Lambda_b^0 \to P_c^+K^-, P_c^+ \to J/\psi p$

Summary

- Chiral Symmetry Restauration
 -> VM in nuclear matter and coupling to resonances
 -> Search for a₁
- Equation of State of matter under Extreme Conditions

 > Missing resonances to be added to Hadron Resonance Gas
 > meson-nucleon Coupling determines EoS within mean field approaches
- Low energy QCD in the u-d-s sector -> Kbar-N data: improve precision below and above threshold -> ϕ :)
- Extension of the Quark model
 -> PWA + coupled channel + rescattering + ..
 -> Lattice???