New results on hadron spectroscopy from JPAC

Adam Szczepaniak, Indiana University/Jefferson Lab

In Memory

Mike Pennington (1946-2018)

Joint Physics Analysis Center

- •JPAC: theory, phenomenology and analysis tools in support of experimental data from JLab12 and other accelerator laboratories.
- Contribute to education of new generation of practitioners in physics of strong interactions.
- In this talk : JPAC's role in spectroscopy analysis and some "exotic" physics

Identifying resonances

INDIANA UNIVERSITY Jefferson Lab

Identifying resonances

INDIANA UNIVERSITY

Signatures of new, unusual light resonances

• At low-t exotic wave production compatible with one pion exchange

Signatures of unusual heavy quark resonances

Spectroscopy from peripheral production

- <figure>
- Need to establish factorization between beam and target fragmentation (Regge factorization)
- Single Regge pole exchange dominate over cut other singularities (cuts, daughters)

Global Regge analysis

 Test Regge pole hypothesis and estimate corrections (daughters, cuts)

 $\mathcal{F}_e(s,t) \xrightarrow[t \to m_e^2]{} \frac{(s/s_0)^{J_e}}{m_e^2 - t}$

Factorizable Regge pole exchange

$$\mathcal{R}(s,t) \equiv \left(\frac{1-z_s}{2}\frac{\nu}{-t}\right)^{\frac{1}{2}|\mu-\mu'|} \left(\frac{1+z_s}{2}\right)^{\frac{1}{2}|\mu+\mu'|}$$

$$A_{\mu_{4}\mu_{3}\mu_{2}\mu_{1}} = \mathcal{R}(s,t)\sqrt{-t}^{|\mu_{1}-\mu_{3}|}\sqrt{-t}^{|\mu_{2}-\mu_{4}|} \hat{\beta}_{\mu_{1}\mu_{3}}^{e13}(t)\hat{\beta}_{\mu_{2}\mu_{4}}^{e24}(t)\mathcal{F}_{e}(s,t)$$
$$\mathcal{F}_{e}(s,t) = -\frac{\zeta_{e}\pi\alpha_{e}^{1}}{\Gamma(\alpha_{e}(t)-l_{e}+1)}\frac{1+\zeta_{e}e^{-i\pi\alpha_{e}(t)}}{2\sin\pi\alpha_{e}(t)}\left(\frac{s}{s_{0}}\right)^{\alpha_{e}(t)}$$

• N_{Data}=1271, N_{par}=9

INDIANA UNIVERSITY

(6 SU(3) couplings, 1 mixing angle, 2 exp. slopes)

Jefferson Lab

Global Regge pole analysis

Jefferson Lab

INDIANA UNIVERSITY

Beam asymmetry: measurement of the exchange process

Possible tension between GlueX and SLAC data ?

Finite Energy Sum Rules

Finite Energy Sum Rules

[V. Mathieu, J.Nys. et al. (JPAC) 1708.07779 (2017)]

Combine energy regimes

INDIANA UNIVERSITY

• Low-energy model ((SAID, MAID, Bonn-Gatchina, Julich-Bonn,...)

Jefferson Lab

• Predict high-energy observables

Two applications

- Understand high-energy dynamics
- Constraining low-energy models

Constraining the resonance spectrum

[J.Nys et al., PRD95 (2017) 034014] $\rho + \omega$ b + h $\rho + \omega$ 1.4 ŋ-MAID A_1 A_2 1.2 BoGn A_4 Im v A^p₄ (GeV⁻²) Im v A^{'p} (GeV⁻¹) Im v A^p (GeV^{−1}) JuBo $t = 0. \text{ GeV}^2$ 1.0 1.0 ANL-O Regge 0.8 0.8 0.6 0.60.4 0 0.4 0.2 **0.2**[†] 0.0 0.0 1.8 2.0 2.4 .6 2.2 2.2 2.2 1.8 2.4 2.0 2.4 1.6 2.0 1.6 1.8 W (GeV W (GeV) W (GeV) 0.50 $\gamma p \rightarrow \eta p$ 0.30 Ambiguities in the low-energy model (η -MAID) 0.20 $d\hat{\sigma}/dt (\mu b/GeV^2)$ Mismatch with high-energy data \rightarrow 0.10 **Possibilities**

0.05

0.02

0.0

4 GeV

6 GeV

8 GeV

0.2

0.4

-t (GeV²)

0.6

0.8

1.0

- Low-energy model inconsistent
- Cut-off not high enough
 - High mass resonances! Ο

η/η' asymmetry probes coupling to strangness

V.Mathieu et al. (JPAC) Phys. Lett. B774, 362 (2017)

$\pi\Delta$ photoproduction

Comparison to GlueX data

- Confirmation of interference pattern
- High -t: natural, low -t: unnatural
- Mismatch: oddly behaved π exchange
 - Ongoing analysis
 - Experimental or theoretical?

- Stringent test of onepion-exchnage production
- Possible to make parameter-free predictions

J.Nys et al. (JPAC) Phys.Lett. B779, 77 (2018)

 $s_{\pi p} \leq 2 \text{ GeV}$

Łukasz Bibrzycki et al. (Cracow, JPAC)

INDIANA UNIVERSITY

Vector meson production

- Pomeron dominates at high energies
- Isoscalar exchanges dominantly helicity non-flip $(\lambda = \lambda')$
- Unnatural exchanges: only helicity flip $(|\lambda \lambda'| = 1)$

V.Mathieu, et al. (JPAC) Phys.Rev. D97, 094003 (2018)

A.Jackura et al. (JPAC/COMPASS) Phys.Lett. B779, 464 (2018)

Constrained by unitary

 $\Delta_s a_{\ell m_\ell}(s) = 2i \rho_\ell(s) t_\ell^*(s) a_{\ell m_\ell}(s)$

Production(s_m) x Interactions in $\eta\pi$ (s_m)

 Δ_s

₽

 $\pi^- p \to \eta' \pi^- p$

Jefferson Lab INDIANA UNIVERSITY

Fits to COMPASS data (preliminary)

Fits to COMPASS data (preliminary)

INDIANA UNIVERSITY

Exotic physics: P_c at JLAB

Confirmation possible thorough photoproduction

If P_c is confirmed, need to:

- Study the electromagnetic properties
- Look for the other members of the P_c multiplet
- Investigate its nature on the model of A. Pilloni et al., Phys.Lett. B772 (2017) 200
- NB: Arbitrary normalization for data

S.J. Brodsky, E. Chudakov , P. Hoyer, J.M. Laget Phys.Lett. B498 (2001) 23-28

(Very) exotic physics: constraining Lorentz symmetry violation

Observer transformations do not affect

Particle transformation, e.g. rotation of the experiment in the background filed produces a physical effect.

- There is a well defined SME $\mathcal{L}_{SME} = \mathcal{L}_{Gravity} + \mathcal{L}_{SM} + \mathcal{L}_{LV}$ e.g $a_{\mu}\bar{\psi}\gamma^{\mu}\psi, c_{\mu\nu}\bar{\psi}\gamma^{\mu}\overleftarrow{D}^{\nu}\psi$ (D.Colladay & V.A. Kostelecky, PRD55, 6760 (1997); PRD58, 1166002 (1998); PRD69, 105009 (2004))
- Only a few constraints in the quark sector : use DIS, SDIS, Drell-Yan, ...

- The first estimate on the sidereal time dependent coefficients c_f were obtained using HERA data: O(10-5) (V.A.Kostelecky, E.Lunghi, A.Vieira, PLB729, 272 (2017))
- Sensitivity studies for EIC are under way: N.Sherrill, A.Accardi, E.Lunghi.

Impact

- > 40 Research Papers (Phys. Rev. Lett., Phys.Rev., Phys.Lett., Eur.J. Phys.)
- ~120 Invited Talks and Seminars
- O(10) on going analyses
- Many projects, e.g.,

_	$\pi N \rightarrow \eta \pi N$	A. Jackura et al.,	arXiv:1707.02848
_	η, η' beam asymmetry	V. Mathieu et al.,	arXiv:1704.07684
_	<i>Z_c</i> (3900)	A. Pilloni et al.,	PLB772 (2017) 200
_	$\gamma p \rightarrow \eta p$	J. Nys et al.,	PRD95 (2017) 034014
_	<i>P_c</i> (4450)	A. Hiller Blin et al.,	PRD94 (2016) 034002
_	$\eta \rightarrow \pi^+ \pi^- \pi^0$	P. Guo et al.,	PRD92 (2015) 054016, PLB (2017) 497
_	Λ(1405)	C. Fernández-Rami	<i>rez et al.,</i> PRD93 (2016) 074015
_	$KN \rightarrow KN$	C. Fernández-Rami	<i>rez et al.,</i> PRD93 (2016) 034029
_	$\pi N \rightarrow \pi N$	V. Mathieu et al.,	PRD92 (2015) 074004
_	$\gamma p \rightarrow \pi^0 p$	V. Mathieu et al.,	PRD92 (2015) 074013
_	$\omega,\phi ightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \pi^{\scriptscriptstyle 0}$	I. Danilkin et al.,	PRD91 (2015) 094029
_	$\gamma p \longrightarrow K^+ K^- p$	M. Shi et al.,	PRD91 (2015) 034007

- ...

INDIANA UNIVERSITY

16

- Collaboration between JPAC and experimental collaborations: co-authoring papers
 - GlueX, CLAS12, COMPASS, BaBar, Belle, BES

Jefferson Lab

KLOE, LHCb in preparation

JPAC 2018

Jefferson Lab Michael Döring Victor Mokeev Emilie Passemar¹ Adam Szczepaniak¹ Vladiszlav Pauk Alessandro Pilloni

California State U 🌌 Peng Guo

Pedagogical U Kraków – Lukasz Bibrzycki

INP Kraków 📂

Robert Kaminski

Indiana University Geoffrey Fox Tim Londergan Vincent Mathieu Andrew Jackura Nathan Sherrill

JGU-Mainz U = Igor Danilkin

FZ Jülich = Ling-Yun Dai

Bonn Universität **=** Misha Mikhasenko George Washington U

Ron Workman

UNAM César Fernández-Ramírez Jorge Silva Castro

Universidad de Valencia 💴 Miguel Albaladejo

Astrid Hiller Blin

INFN Genoa

Ghent Universiteit

Jannes Nys

Code: Faculty/Staff Postdoc PhD student ¹JLab/GWU funded ²JLab/IU funded

Collaborating with: CLAS12 & GlueX (JLab), COMPASS & LHCb (CERN), MAMI (Mainz), BESIII (Beijing), KLOE (Frascati), BELLE II (KEK), BABAR (SLAC)

