Progress on hadronic molecules from strangeness to charm and beauty

Bing-Song Zou Institute of Theoretical Physics, CAS, Beijing

Sino-German CRC110

F.K.Guo, C.Hanhart, Ulf-G.Meissner, Q.Wang, Q.Zhao, B.S.Zou, "Hadronic Molecules", Rev. Mod. Phys. 90 (2018)015004

Outline :

- **1. Hadronic molecules with strangeness**
- 2. Hadronic molecules with hidden charm & LHCb P_c states
- 3. Strange & beauty partners of P_c states
- 4. **Prospects**

1. Hadronic molecules with strangeness

Brief history for the discovery of hadronic molecules

- **1932:** Neutron & Deuteron the 1-st hadronic molecule
- **1947:** π, K
- 1959: KN & molecule predicted by Dalitz Tuan, PRL2, 425
- **1961:** $\Lambda(1405) \rightarrow \Sigma \pi$ observed by Alston et al., PRL6, 698
- post-1962: $f_0(980) \& a_0(980)$ KK molecules? Isgur, ...
 - $f_1(1420)$ **KK* molecule ?** Tornqvist, ...
 - $f_0(1710)$ **K***K* molecule ? Oset, ...
 - N*(1535) $\overline{K}\Sigma$ $\overline{K}\Lambda$ molecule ? Kaiser, ...
 - $D_{s0}^{*}(2317) \& D_{s1}^{*}(2460) \overline{KD} \& \overline{KD}^{*} molecules? Barnes, ...$

K p p molecule \rightarrow **F**. Sakuma's talk yesterday

Akaishi,Yamazaki, PRC65(2002) 044005 Shevchenko,Gal,Mares, PRL98 (2007) 082301 Many hadrons are proposed to be hadronic molecules Problem:

None of them can be clearly distinguished from qqq or qq due to tunable ingredients and possible large mixing of various configurations

PDG2010: "The clean Λ_c spectrum has in fact been taken to settle the decades-long discussion about the nature of the $\Lambda(1405)$ —true 3-quark state or mere KN threshold effect? unambiguously in favor of the first interpretation."

although Λ_c (2595) 1/2⁻ was proposed to be DN molecule by Tolos et al., CPC33(2009)1323. Haidenbauer et al., EPJA47(2011)18

Solution:	Extensio	n to hidden charm and beauty for baryons
N*(1535)	ssuud	
N*(4260)	ccuud	J.J.Wu, R.Molina, E.Oset, B.S.Zou. Phys.Rev.Lett. 105 (2010) 232001
N*(11050)	bbuud	J.J.Wu, L.Zhao, B.S.Zou. PLB709(2012)70
Λ*(1405)	_ qquds	
Λ*(4210)	ccuds	J.J.Wu, R.Molina, E.Oset, B.S.Zou. Phys.Rev.Lett. 105 (2010) 232001
Λ*(11020)	b buds	J.J.Wu, L.Zhao, B.S.Zou. PLB709(2012)70

2. Hadronic molecules with hidden charm & LHCb P_c states

"Prediction of narrow N* and Λ " resonances with hidden charm above 4 GeV", Wu, Molina, Oset, Zou, PRL105 (2010) 232001

KΣ, **Kp** → $\overline{\mathbf{D}}^{(*)}\Sigma_c$, $\overline{\mathbf{D}}_s^{(*)}\Lambda_c$ bound states

 $T = [1 - VG]^{-1}V$ $T_{ab} = \frac{g_a g_b}{\sqrt{s} - z_R}$

	(I,S)	z_R (MeV)		g_a		JP
N*	(1/2, 0)		$\bar{D}\Sigma_c$	$\bar{D}\Lambda_{c}^{+}$		1/2-
		4269	2.85	0		1/2
	(0, -1)		$\bar{D}_s \Lambda_c^+$	$\overline{D}\Xi_{c}$	$\bar{D}\Xi'_{c}$	
۸*		4213	1.37	3.25	0	
4 b		4403	0	0	2.64	

TABLE III: Pole positions z_R and coupling constants g_a for the states from $PB \rightarrow PB$.

	(I,S)	z_R (MeV)		g_a		
NIX	(1/2, 0)		$\bar{D}^*\Sigma_c$	$\bar{D}^* \Lambda_c^+$		
N*		4418	2.75	0		1/2 , 3/2
	(0, -1)		$\bar{D}_{s}^{*}\Lambda_{c}^{+}$	$\bar{D}^* \Xi_c$	$\bar{D}^* \Xi'_c$	
^ *		4370	1.23	3.14	0	
11		4550	0	0	2.53	

TABLE IV: Pole position and coupling constants for the bound states from $VB \rightarrow VB$.

	(I, S)	M	Г			Γ	i			
N*	(1/2, 0)			πN	ηN	$\eta' N$	$K\Sigma$		$\eta_c N$	
- •		4261	56.9	3.8	8.1	3.9	17.0		23.4	
	(0, -1)			$\bar{K}N$	$\pi\Sigma$	$\eta \Lambda$	$\eta' \Lambda$	$K\Xi$	$\eta_c \Lambda$	
Λ*		4209	32.4	15.8	2.9	3.2	1.7	2.4	5.8	
		4394	43.3	0	10.6	7.1	3.3	5.8	16.3	

1/2-

1/2-, 3/2-

JP

TABLE V: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $PB \rightarrow PB$, with units in MeV.

	(I, S)	M	Г			Г	i		
N*	(1/2, 0)			ρN	ωN	$K^*\Sigma$			$J/\psi N$
- 1		4412	47.3	3.2	10.4	13.7			19.2
	(0, -1)			K^*N	$\rho\Sigma$	$\omega \Lambda$	$\phi \Lambda$	$K^*\Xi$	$J/\psi\Lambda$
Λ^*		4368	28.0	13.9	3.1	0.3	4.0	1.8	5.4
		4544	36.6	0	8.8	9.1	0	5.0	13.8

TABLE VI: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $VB \to VB$ with units in MeV.

Prediction for PANDA

 $pp \rightarrow ppJ/\psi > 0.1 \text{ nb}$

> 100 events per day at PANDA/FAIR by L=10³¹ cm⁻²s⁻¹

These Super-heavy narrow N* and Λ* can be found at PANDA !

Albrecht Gillitzer@Juelich had a plan to find them at PANDA

Prediction for 12GeV@JLab

Y. Huang, J.He, H.F.Zhang and X.R.Chen, JPG41, 115004 (2014)

Proposals for looking for N $_{cc}$ & A $_{cc}$ with π^- , K beams at JPARC

- a) X.Y.Wang, X.R.Chen, "The production of hidden charm baryon N*(4261) from π⁻p →η_c n reaction", EPL109 (2015) 41001.
- b) E.J.Garzon, J.J.Xie, "Effects of a N $_{cc}$ resonance with hidden charm in the $\pi^-p \rightarrow D^-\Sigma_c^+$ reaction near threshold", PRC 92 (2015) 035201
- c) X.Y.Wang, X.R.Chen, "Production of the superheavy baryon $\Lambda^*(4209)$ in kaon-induced reaction", EPJA51 (2015) 85

Hidden charm N* above 4 GeV decaying to pJ/ψ are supported by other approaches

 $D\Sigma_c$ state in a chiral quark model ~ 4.3 GeV W.L.Wang, F.Huang, Z.Y.Zhang, B.S.Zou, PRC84(2011)015203 **DΣ**_c state in EBAC-DCC model ~ 4.3 GeV J.J.Wu, T.S.H.Lee, B.S.Zou, PRC85(2012)044002 $\overline{D}\Sigma_c$ & $\overline{D}^*\Sigma_c$ state in Schoedinger Equation method ~ 4.3 GeV Z.C.Yang, Z.F.Sun, J.He, X.Liu, S.L.Zhu, Chin. Phys. C36 (2012) 6 $\overline{D}\Sigma_c^*$, $\overline{D}^*\Sigma_c$, $\overline{D}^*\Sigma_c^*$ states with $J^P = 3/2^-$ C.W.Xiao, J.Nieves, E.Oset, PRD 88 (2013) 056012

S.G.Yuan, K.W.Wei, J.He, H.S.Xu, B.S.Zou, "Study of ccqqq five quark system with three kinds of quark-quark hyperfine interaction," Eur. Phys. J. A48 (2012) 61

		v		`	•			0.111					
			1				J^P	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$
	C	M	F	S	Ins	st.	$\frac{1}{2}^{+}$	4622	4456	4291	4138	4487	4396
J^P	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$	$udsc\bar{c}$	$uudc\bar{c}$	$\frac{1}{2}^{+}$	4636	4480	4297	4140	4501	4426
$\frac{1}{2}$	4273	4267	4084	3933	4209	4114	$\frac{1}{2}^{+}$	4645	4557	4363	4238	4520	4426
2 1 -	4277	4262	4154	4012	4916	/121	$\frac{1}{2}^{+}$	4658	4581	4439	4320	4540	4470
2	4077	4000	4104	4013	4210	4101	$\frac{1}{2}^{+}$	4690	4593	4439	4367	4557	4482
$\frac{1}{2}$	4453	4377	4160	4119	4277	4204	$\frac{1}{2}^{+}$	4696	4632	4467	4377	4587	4490
$\frac{1}{2}^{-}$	4469	4471	4171	4136	4295	4207	$\frac{1}{2}^{+}$	4714	4654	4469	4404	4590	4517
$\frac{1}{2}$	4494	4541	4253	4156	4360	4272	$\frac{1}{2}^{+}$	4728	4676	4486	4489	4614	4518
1-	4576		4263		4362		$\frac{1}{2}^{+}$	4737	4714	4492	4508	4616	4549
2	4010		4200		4002		$\frac{1}{2}^{+}$	4766	4720	4510	4515	4626	4566
2	4649		4278		4416		$\frac{3}{2}^{+}$	4623	4457	4291	4138	4487	4396
$\frac{3}{2}^{-}$	4431	4389	4154	4013	4216	4131	$\frac{3}{2}^{+}$	4638	4515	4297	4140	4501	4426
$\frac{3}{2}^{-}$	4503	4445	4171	4119	4295	4204	$\frac{3}{2}^{+}$	4680	4561	4363	4238	4520	4426
$\frac{3}{2}$ -	4549	4476	4263	4136	4362	4272	$\frac{3}{2}^{+}$	4692	4582	4439	4320	4540	4470
2 3 -	4577	4526	4278	4236	4416	4322	$\frac{3}{2}^{+}$	4695	4625	4439	4367	4557	4482
$\frac{2}{3}$ -	4000	1020	4000	1200	4401	1022	$\frac{5}{2}^{+}$	4705	4539	4297	4140	4501	4426
2	4029		4302		4401		$\frac{5}{2}^{+}$	4719	4649	4439	4320	4540	4470
$\frac{5}{2}$	4719	4616	4362	4236	4461	4322	$\frac{5}{2}^{+}$	4773	4689	4467	4367	4587	4482
							$\frac{5}{2}^{+}$	4793	4696	4486	4404	4615	4490
							$\frac{5}{2}^{+}$	4821	4710	4492	4515	4632	4517
							$\frac{7}{2}^{+}$	4945	4841	4638	4508	4698	4566
12^{-1}	+) _ [M(3/)	2-):	130	~300	MeV	$\frac{7}{2}^{+}$	4955	4862	4671	4551	4712	4634
	/ -		- , •				7+	4974	4919	4705	4587	4765	4669

 $\frac{2}{7}$ +

5010

4759

4797

LHCb observation of 2 pentaquarks

LHCb, Phys.Rev.Lett. 115 (2015) 072001 : Observation of two N* from $\Lambda_b^0 \rightarrow J/\psi K^- p$

å}K

1) $4380 \pm 8 \pm 29$ MeV, $205 \pm 18 \pm 86$ MeV, $P_c^+(4380)$ 2) $4450 \pm 2 \pm 3$ MeV, $39 \pm 5 \pm 19$ MeV, $P_c^+(4450)$

The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

LHCb pentaquark states vs Predictions

Consistence : mass of $P_c(3/2^-)$, pJ/ ψ decay mode

Problems:

1) $P_c^+(4380)$ -- larger decay width than prediction

2) Where are lower $P_c(1/2^-)$ states ?

Progress on P_c states after LHCb observation

Thresholds $\overline{D}\Sigma_c^*$ (4383MeV), $\overline{D}^*\Sigma_c$ (4460MeV), $p\chi_{c1}$ (4449MeV)

1) $\overline{\mathbf{D}}\Sigma_{c}^{*}$, $\overline{\mathbf{D}}^{*}\Sigma_{c}$, $\overline{\mathbf{D}}^{*}\Sigma_{c}^{*}$ molecular states

R.Chen, X.Liu, X.Q.Li, S.L.Zhu, PRL115 (2015) 132002; H.X.Chen, W.Chen, X.Liu, T.G.Steele, S.L.Zhu, PRL115 (2015)172001 L.Roca, J.Nieves, E.Oset, PRD92 (2015) 094003; J.He, PLB 753 (2016)547;

2) diquark cu & triquark c(ud) states

L.Maiani, A.D.Polosa, V. Riquer, PLB749 (2015) 289; R.Lebed, PLB749 (2015) 454; G.N.Li, M.He, X.G.He, JHEP 1512 (2015) 128; R.Zhu, C.F.Qiao, PLB756 (2016) 259;

3) Kinematic triangle-singularity

F.K.Guo, Ulf-G.Meißner, W.Wang, Z.Yang, PRD92 (2015) 071502 J/ψ X.H.Liu, Q.Wang, Q.Zhao, PLB757 (2016) 231 χ_{cJ} N

For comprehensive reviews, cf.:

H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Phys.Rept. 639 (2016) 1

$\overline{\mathbf{D}}\Sigma_{c}^{*}$, $\overline{\mathbf{D}}^{*}\Sigma_{c}$, $\overline{\mathbf{D}}^{*}\Sigma_{c}^{*}$ bound states

[1] R.Chen, X.Liu, X.Q.Li, S.L.Zhu, PRL115 (2015) 132002;

 $P_c^+(4380) - \overline{D}^*\Sigma_c - 3/2^-$; $P_c^+(4450) - \overline{D}^*\Sigma_c^* - 5/2^-$

[2] Y.Yamaguchi, E. Santopinto, PRD96 (2017) 014018

 $P_{c}^{+}(4380) - \overline{D}^{(*)}\Sigma_{c}^{(*)} - \overline{D}^{(*)}\Lambda_{c}^{-} 3/2^{+}; P_{c}^{+}(4450) - \overline{D}^{(*)}\Sigma_{c}^{(*)} - \overline{D}^{(*)}\Lambda_{c}^{-} 5/2^{-}$

[3] J.He, PLB 753 (2016)547; PRD95 (2017)074004 Y.H.Lin, C.W.Shen, F.K.Guo, B.S.Zou, PRD95(2017)114017

 $P_{c}^{+}(4380) - \overline{D}\Sigma_{c}^{*}/\overline{D}^{*}\Sigma_{c}^{*}/3/2^{-}; P_{c}^{+}(4450) - \overline{D}^{*}\Sigma_{c}^{*}/5/2^{+}$

→ Different predictions to be checked !

[1] R.Chen, X.Liu, X.Q.Li, S.L.Zhu, PRL115 (2015) 132002 OPE: Prediction of I=3/2 pentaquarks !

[2] Y.Yamaguchi, E. Santopinto, PRD96 (2017) 014018

Prediction of a few more J=3/2 pentaquarks !

Λ [MeV]	1300	1400	1500	1600
$J^{P} = 3/2^{-}$	4236.9 <i>– i</i> 0.8	4136.0	4006.3	3848.2
	4381.3 <i>– i</i> 11.4	4307.9 – <i>i</i> 18.8	4242.6 – <i>i</i> 1.4	4150.1
	4368.5 <i>– i</i> 64.9	4348.7 – <i>i</i> 21.1	4312.7 - i16.0	4261.0 <i>– i</i> 7.0
$J^P = 3/2^+$	4223.0 <i>- i</i> 97.9	4206.7 – <i>i</i> 41.2	4169.3 <i>– i</i> 5.3	4104.2
	4363.3 <i>– i</i> 57.0	4339.7 – <i>i</i> 26.8	4311.8 – <i>i</i> 6.6	4268.5 - i1.3
$J^{P} = 5/2^{-1}$		4428.6 – <i>i</i> 89.1	4391.7 <i>– i</i> 88.8	4338.2 <i>– i</i> 56.2
$J^{P} = 5/2^{+}$			4368.0 – <i>i</i> 9.2	4305.8 <i>- i</i> 1.9
	—	—	_	

Problem: much larger width than observed $P_c^+(4450)$ meanwhile too small width for $P_c^+(4380)$

[3] Disentangling $\overline{D}\Sigma_c^*$ / $\overline{D}^*\Sigma_c$ nature of P_c^+ states from their decays Y.H.Lin, C.W.Shen, F.K.Guo, B.S.Zou, PRD95(2017)114017

One pion exchange is important !

Partial decay widths of $P_c^+(4380)$ & $P_c^+(4450)$

		Widths (MeV)							
	$P_c(4$	380)	$P_{c}(4450)$						
Mode	$\bar{D}\Sigma_c^*(\tfrac{3-}{2})$	$\bar{D}^*\Sigma_c(\tfrac{3-}{2})$	$\bar{D}^*\Sigma_c(\tfrac{3-}{2})$	$\bar{D}^*\Sigma_c(\tfrac{5+}{2})$					
$\bar{D}^*\Lambda_c$	131.3 🗸	35.3 √	72.3√	20.5 🗸					
$J/\psi p$	3.8	16.6	16.3	4.0					
$\bar{D}\Lambda_c$	1.2	17.0 🗸	41.4 🗸	18.8 🗸					
πN	0.06	0.07	0.07	0.2					
$\chi_{c0} p$	0.9	0.004	0.02	0.002					
$\eta_c p$	0.2	0.09	0.1	0.04					
ρN	1.4	0.15	0.14	0.3					
ωp	5.3	0.6	0.5	0.3					
$\bar{D}\Sigma_c$	0.01	0.1	1.2	0.8					
$\bar{D}\Sigma_c^*$			7.7	1.4					
$\bar{D}\Lambda_c\pi$	11.6								
Total	144.3	69.9	139.8	46.4					

It is very important to study $P_c \rightarrow \overline{D}^* \Lambda \& \overline{D} \Lambda !$

LHCb pentaquark states vs Post-explanations

Consistent for $P_c^+(4380)$ to be a $D\Sigma_c^*(3/2^-)$ molecule with a large decay width to $D^*\Lambda_c$

Consistent for $P_c^+(4450)$ to be a $\overline{D}^*\Sigma_c^-(5/2^+)$ molecule

Problems:

- 1) Where are lower $P_c(1/2^-)$ states ?
- 2) Where are predicted $\Lambda_{\overline{cc}}$ states ?

Many more pentaquarks are expected !

3. Strange & beauty partners of P_c states

Strangeness partners of P_c states: N*(1875) & N*(2080) $K\Sigma^* \sim 1880$ K* $\Sigma \sim 2086$

N_{ss} penta-quarks at BES ?!

Contents lists available at SciVerse ScienceDirect

Physics Letters B

Prediction of super-heavy N^* and Λ^* resonances with hidden beauty Jia-Jun Wu^{a,*}, Lu Zhao^a, B.S. Zou^{a,b}

M (MeV)	Γ (MeV)	Γ _i (Me	/)				
11052	1.38	πN 0.10	ηN 0.21	η′Ν 0.11	<i>KΣ</i> 0.42	$\eta_b N$ 0.52	1/2-
11 100	1.33	ρN 0.09	ωN 0.30	<i>K*Σ</i> 0.39	ΥΝ 0.51		1/2-, 3/2-

$\bar{D}\Lambda_{c} - \bar{D}\Sigma_{c}$ and $B\Lambda_{b} - B\Sigma_{b}$ dynamical coupled channel study C.W.Shen, Roechen, Meissner, Zou, CPC42(2018) 023106

More pentaquarks with hidden beauty than with hidden charm

Decay behavior of P_s & P_b pentaquark states

Y.H.Lin, C.W.Shen, B.S.Zou, ArXiv: 1805.06843

		Widths (MeV)				Widths (MeV)	
Mode	$\frac{J^P = 3/2^-}{N(1075) V \Sigma^*} = N(2000) V(5)$		$J^P = 1/2^-$	Mode	$J^P =$	= 3/2	$J^P = 1/2^-$	
M (F00)	$N(1875) K \Sigma^*$	$N(2080) K^*\Sigma$	$N(2080) K^*\Sigma$		$P\Sigma^*$	$\frac{-7}{R^*\Sigma}$	$\frac{1}{R^*\Sigma}$	
$N\sigma(500)$	2.6	0.05	0.3		$D \square_b$	$D \ \ \Box_b$	$D \ \ \Box_b$	
πN	3.8	0.2	22.7	$B^*\Lambda_b$	271.1	19.9	167.0	
ρN	2.3	3.8	6.1	Υ_n	0.3	0.04	0.1	
ωp	6.6	11.3	18.2	1 P	0.0	0.01	0.1	
$K\Sigma$	0.03	1.4	9.1	ρN	5.5	0.02	0.1	
$K\Lambda$	0.7	3.7	19.3	ωp	20.9	0.07	0.4	
ηp	0.6	0.4	1.8	RA,		73	135.0	
$\pi\Delta$	201.4	82.6	46.9	$D \Pi_b$	-	1.0	100.9	
$K^*\Lambda$	-	2.4	7.9	$B\Sigma_b$	-	-	-	
ϕp	-	19.2	27.0	$\eta_{\rm h}p$	0.02	0.0001	0.0009	
$K\Sigma^*$	-	7.3	1.3	2/102	1 /	0.0008	0.2	
$K\Lambda(1520)$	-	0.1	1.3	$\chi_{b0}p$	1.4	0.0008	0.2	
$K\Lambda(1405)$	-	8.0	8.8	πN	0.7	0.005	0.003	
$K\pi\Lambda$	10.1	-	-	$B\Sigma_{L}^{*}$	-	-	-	
$K\pi\Sigma$	-	41.3	46.1	Total	200.0	27.4	203.8	
Total	228.2	181.7	216.8	Total	499.9	21.4	JUJ. 0	

Guidance for P_s & P_b search

4. Prospects

my favorite strategy for hadron spectroscopy:

 ccuud & ccuds → sss - qqsss → cqq - qqcqq

 → hyperons → light baryons

charm & beauty meson

charm & beauty baryon

- New penta-quark spectroscopy provides a new ideal platform for understanding multiquark dynamics
- Further experimental confirmation and extension for whole penta-quark spectroscopy from γN , πN , KN, $e^+e^- \rightarrow \overline{\Lambda}_b \Lambda_b$, etc.
 - ep/γp@JLab, π10/K10@JPARC, BelleII, BESIII, Eic/EicC, PANDA@FAIR, STCF etc. may play important role here!

Thank you for your attention!

[2] Z.C.Yang, Z.F.Sun, J.He, X.Liu, S.L.Zhu, "The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon," Chin. Phys. C36 (2012) 6

Schoedinger Equation method with π , η , ρ , ω , σ exchanges: $\overline{D}*\Sigma_c$ (3/2⁻) N* state -- 4360 ~ 4460 MeV

[3] C.W.Xiao, J.Nieves, E.Oset, "Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons", PRD 88 (2013) 056012

3 $J^P = 3/2^- P_c^+$ states : $D\Sigma_c^*$, $D^*\Sigma_c^-$, $D^*\Sigma_c^*$ states

TABLE II. The coupling constants to various channels for certain poles in the J = 3/2, I = 1/2 sector.

4334.45 + i19.41	$J/\psi N$	$\bar{D}^* \Lambda_c$	$\bar{D}^*\Sigma_c$	$\bar{D}\Sigma_c^*$	$\bar{D}^*\Sigma_c^*$
g_i	1.31 - i0.18	0.16 - i0.23	0.20 - i0.48	$3\ 2.97 - i0.3$	$6 \ 0.24 - i0.76$
$ g_i $	1.32	0.28	0.52	2.99	0.80
4417.04 + i4.11	$J/\psi N$	$\bar{D}^* \Lambda_c$	$\bar{D}^*\Sigma_c$	$\bar{D}\Sigma_c^*$	$\bar{D}^*\Sigma_c^*$
g_i	0.53 - i0.07	0.08 - i0.07	2.81 - i0.07	$7 \ 0.12 - i0.1$	$0 \ 0.11 - i0.51$
$ g_i $	0.53	0.11	2.81	0.16	0.52
4481.04 + i17.38	$J/\psi N$	$\bar{D}^*\Lambda_c$	$\bar{D}^*\Sigma_c$	$\bar{D}\Sigma_c^*$	$\bar{D}^*\Sigma_c^*$
g_i	1.05 + i0.10	0.18 - i0.09	0.12 - i0.10	0.00000000000000000000000000000000000	$5\ 2.84 - i0.34$
$ g_i $	1.05	0.20	0.16	0.22	2.86

a $J^P = 5/2^- P_c^+$ state : $\overline{D} * \Sigma_c^*$ bound states at 4487 MeV

"Y(4260)的结构以及带电Zc(3900)的产生"

PRL 110, 252001 (2013)

PHYSICAL REVIEW LETTERS

21 JUNE 2013

a

