Light Meson Decays at BESIII

(On behalf of the BESIII Collaboration) Wencheng Yan

Beihang University

15th International Workshop on Meson Physics KRAKÓW, POLAND 7th - 12th June 2018

OUTLINE

> Introduction

$\succ \eta'$ meson decays

- Hadonic decays: $\eta' \rightarrow \pi^{+(0)}\pi^{-(0)}\pi^0$, $\eta' \rightarrow \pi^{+(0)}\pi^{-(0)}\eta$
- **\blacklozenge** Radiative decays: $\eta' \rightarrow \gamma \pi^+ \pi^-$, $\eta' \rightarrow \gamma \gamma \pi^0$

$> a_0^0(980) - f_0(980)$ mixing

- $\blacklozenge a_0^0(980) \rightarrow f_0(980): J/\psi \rightarrow \varphi a_0(980) \rightarrow \varphi \eta \pi^0$
- $\blacklozenge f_0(980) \to a_0^0(980): \chi_{c1} \to \pi^0 f_0(980) \to \pi^0 \pi^+ \pi^-$

> Summary

Beijing Electron Positron Collider II (BEPC II)

MESON

Storage ring ~240m

Linac ~200m

BESIII Detector

(sta

2018/6/12 W. Gradl — 2004: started BEPCII/BESIII construction

- ✓ Double rings
- ✓ Beam energy: 1-2.3 GeV
- ✓ Designed luminosity: 1×10³³ cm⁻²s⁻¹
 2008: test run
- 2009 today: BESIII physics runs

BESIII Detector

2018/6/12

η, η' from J/ ψ decays

High production rate of light mesons in J/ψ decays

BESIII: τ –charm factory

• Also a factory for light mesons $(\eta/\eta'/\omega)$ • η/η' from J/ ψ radiative decays $\rightarrow 7.2 \times 10^6 \eta'$ $\rightarrow 2.4 \times 10^6 \eta$

η, η' :a rich physics field

- test the predictions of ChPT
- study transition form factors
- test fundamental symmetries
- probe physics beyond the SM

η decay mode	physics highlight	$\eta' \bmod$	physics highlight
$\eta \to \pi^0 2 \gamma$	ChPT	$\eta' ightarrow \pi\pi$	CPV
$\eta ightarrow \gamma B$	leptophobic dark boson	$\eta' ightarrow 2\gamma$	chiral anomaly
$\eta \rightarrow 3\pi 0$	$m_u - m_d$	$\eta' ightarrow \gamma \pi \pi$	box anomaly, form factor
$\eta ightarrow \pi^+\pi^-\pi^0$	$m_u - m_d$, CV	$\eta' ightarrow \pi^+\pi^-\pi^0$	$m_u - m_d$, CV
$\eta \rightarrow 3\gamma$	CPV	$\eta' ightarrow \mu^+ \mu^- \pi^0, e^+ e^- \pi^0$	CV

Amplitude Analysis of $\eta' \rightarrow \pi^{+(0)} \pi^{-(0)} \pi^0$

- ♦ η' → πππ are isospin-violating processes , dominated by strong interaction [Nucl. Phys. B460, 127(1996)]
- light quark mass difference $(m_d m_u)/m_s$ can be extracted

$$r_{\pm} = \frac{B(\eta' \to \pi^{+}\pi^{-}\pi^{0})}{B(\eta' \to \pi^{+}\pi^{-}\eta)}$$
$$r_{0} = \frac{B(\eta' \to \pi^{0}\pi^{0}\pi^{0})}{B(\eta' \to \pi^{0}\pi^{0}\eta)}$$

 ◆ Using ChPT, large P-wave contribution of η' → ρ[±]π[∓] is predicted [Eur. Phys. J. A 26, 383(2005)]

Amplitude Analysis of $\eta' \rightarrow \pi^{+(0)} \pi^{-(0)} \pi^0$

Amplitude Analysis of $\eta' \rightarrow \pi^{+(0)} \pi^{-(0)} \pi^0$

PRL 118, 012001 (2017)

Described by three components: P wave $(\rho^{\pm}\pi^{\mp})$, resonant S wave $(\sigma \pi^0)$, phase-space S wave $(\pi \pi \pi)$ • Each component > 24σ $B(\eta' \rightarrow \pi^+\pi^-\pi^0)$ $= (35.91 \pm 0.54 \pm 1.74) \times 10^{-4}$ $B(\eta' \rightarrow \pi^0 \pi^0 \pi^0)$ $= (35.22 \pm 0.82 \pm 2.54) \times 10^{-4}$ $B(\eta' \rightarrow \rho^{\pm} \pi^{\mp})$ $= (7.44 \pm 0.06 \pm 1.26 \pm 1.84) \times$ 10^{-4} $B(\eta' \rightarrow \pi^+\pi^-\pi^0)_{\rm s}$ $= (37.63 \pm 0.77 \pm 2.22 \pm 4.48) \times$ 10^{-4} **Obtained decay width ratios:** $r_{+} = (8.77 \pm 1.19) \times 10^{-3}$

 $r_0 = (15.86 \pm 1.33) \times 10^{-3}$

Matrix Elements for $\eta' \rightarrow \pi^{+(0)} \pi^{-(0)} \eta$

- Remains a subject of effective ChPT
- explored by CLEO, VES, GAMS Collaboration but with limited statistics
- $\eta' \rightarrow \pi^+ \pi^- \eta$ is studied based on 225M J/ ψ at BESIII [PRD83,012003(2011)]
- A cusp due to $\pi^+\pi^-$ mass threshold for the Dalitz plot of $\eta' \to \pi^0\pi^0\eta$
- ◆ For the charged decay mode

 $X = \frac{\sqrt{3}(T_{\pi^+} - T_{\pi^-})}{Q}, \qquad Y = \frac{m_{\eta} + 2m_{\pi}}{m_{\pi}} \frac{T_{\eta}}{Q} - 1.$ $T_{\pi} \text{ and } T_{\eta} \text{ are the kinetic energies of } \pi \text{ and } \eta \text{ in the } \eta' \text{ rest frame, } Q = m_{\eta'} - m_{\eta} - 2m_{\pi}$ ◆ For the neutral decay mode

$$X = \frac{\sqrt{3}|T_{\pi_1^0} - T_{\pi_2^0}|}{Q}.$$

♦ general representation

 $|M(X,Y)|^2 = N(1 + aY + bY^2 + cX + dX^2 + \cdots),$

◆ linear representation

 $|M(X,Y)|^2 = N(|1 + \alpha Y|^2 + cX + dX^2 + \cdots),$

Here, *a*, *b*, *c*, *d* are free parameters α is a complex number, $a=2\text{Re}(\alpha)$, $b=\text{Re}(\alpha)^2 + \text{Im}(\alpha)^2$

2018/6/12

Matrix Elements for $\eta' \rightarrow \pi^+ \pi^- \eta$

	$\eta' ightarrow \eta \pi^+ \pi^-$				
Parameter	EFT [5]	Large N_C [7]	RChT [7]	VES [10]	This work
a	-0.116(11)	-0.098(48)	(fixed)	-0.127(18)	-0.056(4)(2)
b	-0.042(34)	-0.050(1)	-0.033(1)	-0.106(32)	-0.049(6)(6)
с				+0.015(18)	0.0027(24)(18)
d	+0.010(19)	-0.092(8)	-0.072(1)	-0.082(19)	-0.063(4)(3)
$\Re(\alpha)$	[5]Eur. Phys	s. J. A 26, 383(2005)	-0.072(14)	-0.034(2)(2)
$\Im(\alpha)$	[7] THEP 05	094(2011)		0.000(100)	0.000(19)(1)
с		,0)4(2011)		+0.020(19)	0.0027(24)(15)
d	[10] Phys. L	ett. B 651, 22	(2007).	-0.066(34)	-0.053(4)(4)

2018/6/12

Matrix Elements for $\eta' \rightarrow \pi^0 \pi^0 \eta$

	$\eta' ightarrow \eta \pi^0 \pi^0$		
Parameter	EFT [5]	GAMS-4π [12]	This work
a	-0.127(9)	-0.067(16)	-0.087(9)(6)
b	-0.049(36)	-0.064(29)	-0.073(14)(5)
С			
d	+0.011(21)	-0.067(20)	-0.074(9)(4)
$\Re(\alpha)$ [5]Eur	Phys I A-26 383(20	(0.5) $-0.042(8)$	-0.054(4)(1)
$\Im(\alpha)$ [12] Phy	vs. At. Nucl.72, 231 (2009) 0.000(70)	0.000(38)(2)
d d		-0.054(19)	-0.061(9)(5)
<u>u</u>		-0.034(19)	-0.001(9)(3)

Matrix Elements for $\eta' \rightarrow \pi^0 \pi^0 \eta$

Search for cusp effect

• FSI: A cusp effect (more than 8%) on $\pi^0 \pi^0$ mass spectrum below the $\pi^+ \pi^-$ mass threshold [EPJC62, 511 (2009)]

• No evidence of a cusp effect with current statistics

2018/6/12

Study of $\eta' \rightarrow \gamma \pi^+ \pi^-$ Decay Dynamics

- In VMD model, this process is dominated by $\eta' \rightarrow \gamma \rho(770)$
- Studied by several experiments , a peak shift 20MeV was observed
- The discrepancy attributed to the Wess-Zumino-Witten anomaly in the ChPT, known as the box anomaly [PLB37, 95 (1971), NPB223, 422 (1983)]
- Recently a model-independent approach based on ChPT are proposed: A \propto P(s) · F_V(s) [PLB 707, 184 (2012)]

Study of $\eta' \rightarrow \gamma \pi^+ \pi^-$ Decay Dynamics

Model dependent fit

• Besides the ρ^0 , the ω contribution is needed

- Fits with only ρ^0 and only $\rho^0 \omega$ interference are insufficient
- Extra contribution of box-anomaly or $\rho(1450)$, or both of them is necessary

2018/6/12

Study of $\eta' \rightarrow \gamma \pi^+ \pi^-$ Decay Dynamics

Model independent fit

♦ $A = N \cdot P(s) \cdot F_V(s)$ $P(s) = 1 + k \cdot s + \lambda \cdot s^2 + \xi \cdot BW_\omega$ N is a normalization factor $F_V(s)$ is the pion vector form factor, obtained by $e^+e^- \rightarrow \pi^+\pi^-$.

• Fit results:

 $k = (0.992 \pm 0.039 \pm 0.067 \pm 0.16) \text{GeV}^{-2}$ $\lambda = (-0.523 \pm 0.039 \pm 0.066 \pm 0.181) \text{GeV}^{-2}$ $\xi = (0.199 \pm 0.006 \pm 0.011 \pm 0.007) \text{GeV}^{-2}$

arXiv:1712.01525v2

the ω contribution and quadratic term are significant (34σ and 13σ)
 A fit without ω contribution is insufficient

2018/6/12

Doubly radiative decay $\eta' \rightarrow \gamma \gamma \pi^0$

• The inclusive $\eta' \to \gamma \gamma \pi^0$ includes the vector mesons ρ / ω and the nonresonant contribution

Doubly radiative decay $\eta' \rightarrow \gamma \gamma \pi^0$

This measurement:

$$B(\eta' \to \gamma \gamma \pi^{0})_{inc} = (3.20 \pm 0.07 \pm 0.23) \times 10^{-3}$$

$$B(\eta' \to \gamma \omega) = (23.7 \pm 1.4 \pm 1.8) \times 10^{-4}$$

$$B(\eta' \to \gamma \gamma \pi^{0})_{NR} = (6.16 \pm 0.64 \pm 0.67) \times 10^{-4}$$

PDG: $B(\eta' \to \gamma \gamma \pi^{0}) < 8.0 \times 10^{-4}$

Linear σ model and VMD: $B(\eta' \rightarrow \gamma \gamma \pi^0) \sim 6.0 \times 10^{-3}$

2018/6/12

$a_0^0(980)$ -f₀(980) mixing

Meson	I ^G (J ^{PC})	Mass(MeV)	Width(MeV)	Decay
a ₀ (980)	1-(0++)	980 ± 20	50~100	ηπ, ΚΚ
f ₀ (980)	0+(0++)	990 ± 10	10~ 100	ππ, ΚΚ

- ♦ In theory, a₀⁰(980) and f₀(980) are explained as qq̄ mesons, tetraquarks, KK̄ molecules, qq̄g hybrids
- In 1970s, the mixing mechanism was firstly proposed [PLB 88, 367 (1979)]
 m(K⁺K⁻) ≈ 987MeV m(K⁰K⁰) ≈ 995MeV m(K⁰K⁰) - m(K⁺K⁻) ≈ 8MeV

• A narrow peak of about 8MeV is predicted

$a_0^0(980)-f_0(980)$ mixing

• Theorist proposed to directly measure $f_0(980) \leftrightarrow a_0^0(980)$ mixing via J/ $\psi \rightarrow \phi f_0(980) \rightarrow \phi a_0^0(980) \rightarrow \phi \eta \pi^0$ and $\chi_{c1} \rightarrow \pi^0 a_0^0(980) \rightarrow \pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-$ [Wu, Zhao, Zou, PRD 75 114012(2007), PRD 78 074017(2008)]

$$\xi_{fa} = \frac{\mathcal{B}(J/\psi \to \phi f_0(980) \to \phi a_0^0(980) \to \phi \eta \pi^0)}{\mathcal{B}(J/\psi \to \phi f_0(980) \to \phi \pi \pi)}$$

 $\xi_{af} = \frac{\mathcal{B}(\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 f_0(980) \to \pi^0 \pi^+ \pi^-)}{\mathcal{B}(\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 \pi^0 \eta)}$

♦ Mixing intensity is sensitive to couplings of g_{a0K+K}⁻ and g_{f0K+K}⁻
 ♦ Measured at BESIII based on 225M J/ψ and 108M ψ'[PRD83.032003(2011)] significance <5σ ξ_{af} < 1.0%@90%C.L. ξ_{fa} < 1.1%@90%C.L.

$f_0(980) \rightarrow a_0^0(980)$ mixing

arXiv:1802.00583v3

- Constructed by $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow 3\pi$
- Interference between EM and mixing signal
- ♦ Two solutions are found

• Significance of $f_0(980) \rightarrow a_0^0(980)$ is 7.4 σ

Channel	$f_0(980) o a_0^0(980)$		
Channel	Solution I	Solution II	
$\mathcal{B}(\text{mixing}) \ (10^{-6})$	$3.18 \pm 0.51 \pm 0.38 \pm 0.28$	$1.31 \pm 0.41 \pm 0.39 \pm 0.43$	
$\mathcal{B}(EM) \ (10^{-6})$	$3.25 \pm 1.08 \pm 1.08 \pm 1.12$	$2.62 \pm 1.02 \pm 1.13 \pm 0.48$	
$B(\text{total}) \ (10^{-6})$	$4.93 \pm 1.01 \pm 0.96 \pm 1.09$	$4.37 \pm 0.97 \pm 0.94 \pm 0.06$	
ξ (%)	$0.99 \pm 0.16 \pm 0.30 \pm 0.09$	$0.41 \pm 0.13 \pm 0.17 \pm 0.13$	

2018/6/12

$a_0^0(980) \to f_0(980)$ mixing

- Very narrow peak of f₀(980)
- EM contribution too weak ,can be negligible
- ◆ Interference is negligible

```
• Significance of

a_0^0(980) \rightarrow f_0(980) is

5.5\sigma
```


$a_0^0(980)$ - $f_0(980)$ mixing

- ◆ Z-axis represents the statistical significance of the mixing signal
- The regions with higher significance indicate the larger probability
- difficult to directly discriminate different theoretical models due to large uncertainties of these models

Summary(I)

- Four η' meson decays and a₀⁰(980)-f₀(980) mixing are reviewed
 - Amplitude analysis of $\eta' \to \pi^{+(0)}\pi^{-(0)}\pi^{0}$ Significant p-wave $\eta' \to \rho^{\pm}\pi^{\mp}$ is observed for the first time
 - Dalitz plot analysis of $\eta' \to \pi^{+(0)}\pi^{-(0)}\eta$ The linear representation does not describe the data well
 - Study of $\eta' \rightarrow \gamma \pi^+ \pi^-$ decay dynamics

Both model-dependent and -independent approaches, contributions of ω and the $\rho(770)-\omega$ interference are observed for the first time

• **First observation of** $\eta' \rightarrow \gamma \gamma \pi^0$ Branching fraction of the inclusive $\eta' \rightarrow \gamma \gamma \pi^0$ and $M_{\gamma\gamma}^2$ dependent partial widths are measured for the first time

Summary(II)

- First observation of $a_0^0(980)$ - $f_0(980)$ mixing The mixing signal with 7.4 σ and 5.5 σ for the first time, the constraint regions on $g_{a_0K^+K^-}$ and $g_{f_0K^+K^-}$ are roughly obtained by the significance test
- > $J/\psi(\psi')$ decay is a unique place to study light mesons
- > **BESIII:** 1.3 billion + 3.7 billion J/ ψ events
 - **A sample of 3.7 billion J/ψ events will be taken in ~2018**
 - So large data sample allows us to study light mesons with the unprecedented statistics
 - More interesting results are expected

Thank you for your attention!

Backup

BESIII Collaboration

2018/6/12

BESIII publications on η/η' decays

- η' → π⁺π⁻η
- $\eta/\eta' \rightarrow \pi^+\pi^-, \pi^0\pi^0$
- $\eta' \to \pi^+ \pi^- \pi^0, \pi^0 \pi^0 \pi^0$
- $\eta/\eta' \rightarrow \text{invisible}$
- $\eta/\eta' \rightarrow \pi^+ ev$
- η' → 3(π⁺π⁻)
- $\eta' \rightarrow 2(\pi^+\pi^-), \pi^+\pi^-\pi^0\pi^0$
- η' →γe+e-
- $\eta \rightarrow \pi^+ \pi^- \pi^0$, $\eta/\eta' \rightarrow \pi^0 \pi^0 \pi^0$
- η' →ωe+e-
- η' → Kπ
- $\eta' \rightarrow \rho \pi$
- $\eta' \rightarrow \gamma \pi^+ \pi^-$
- η΄ →π⁺π⁻η, η΄ →π⁰π⁰η

- PRD83, 012003(2011) PRD83, 032006(2011) PRL108, 182001(2012) PRD87,012009(2013) PRD87,032006(2013) PRD88,091502(2013) PRL112,251801(2014) PRD92,012001(2015) PRD92,012014(2015) PRD92,051101(2015) PRD93, 072008 (2016)
 - PRL118,012001(2017)
- PRD96,012005(2017)
- arXiv:1712.01525, accepted by PRL
- PRD97, 012003 (2018)

2018/6/12

BESIII Collaboration

A2 Collaboration

PRD 97, 012003 (2018)

hep-ex/1709.0423