Production of quarkonium pairs in high-energy proton-proton collisions

Wolfgang Schäfer Institute of Nuclear Physics PAN, Kraków

15th International Workshop on Meson Physics Kraków, Poland 7th - 12th June 2018

Outline

- Motivation
- Single (SPS) and double parton scattering (DPS) mechanisms
- How to separate DPS from SPS? Rapidity distance between mesons!
- SPS production mechanisms that survive at large pair invariant mass/large rapidity distance
- Production of χ_c -pairs and J/ ψ -pairs

 work in collaboration with Sergey Baranov (Lebedev Inst.), Anna Cisek (Rzeszow U.), Antoni Szczurek (IFJ PAN).

Motivation

- "lower" center-of mass energies meson-meson interactions may probe resonances/bound states (e.g. "tetraquarks" etc).
- At higher energies a quasi-diffractive (or Regge) regime takes over
- Here we will be interested in the production mechanisms of pairs of heavy quarkonia in pp collisions. In particular their production in single versus double parton scattering.

Single vs. double parton scattering

- Production of heavy quark pairs mainly through single hard scattering $\, gg
 ightarrow Q ar Q$
- At LHC energies multiple hard scatterings in one pp-collision become important
- DPS especially prominent in charm sector → large cross sections & access from perturbative QCD [Luszczak, Maciula & Szczurek (2012), Kom, Kulesza & Stirling (2011)]

DPS & the effective cross section

$$T_{NN}(\mathbf{b}) = \int d^2 \mathbf{s} \, t_N(\mathbf{s}) t_N(\mathbf{b} - \mathbf{s})$$
$$\frac{1}{\sigma_{\text{eff}}} = \int d^2 \mathbf{b} \, T_{NN}^2(\mathbf{b})$$

Normalization of DPS is controlled by the

"*effective cross section*" & measures the overlap of parton clouds in the transverse plane.

$$\frac{d\sigma_{\rm DPS}(pp \to abX)}{dy_a dy_b d^2 \vec{p}_{aT} d^2 \vec{p}_{bT}} = \frac{1}{1 + \delta_{ab}} \frac{1}{\sigma_{\rm eff}} \frac{d\sigma(pp \to aX)}{dy_a d^2 \vec{p}_{aT}} \frac{d\sigma(pp \to bX)}{dy_b d^2 \vec{p}_{bT}}$$

- Independent production: systems a & b are *completely uncorrelated in azimuth.*
- Each of the single particle spectra is a broad function of rapidity → rapidity distance Δy between a & b has a very broad distribution!
- Phenomenological models suggest: σ_{eff} = 15 mb.

Experimental results for σ_{eff}

- The universal σ_{eff} = 15 mb consistent throughout *except* for the J/ψ-pair production at ATLAS & D0.
- Could this be a hint for the failure of the *uncorrelated ansatz* for DPS?
- Or are we lacking in our understanding of J/ψ-pair production?
- What kinematic variables really distinguish DPS & SPS ?

SPS: The "box" production mechanism

- We use k_τ factorization, where incoming gluons are off-shell, and carry transverse momenta quantified by unintegrated gluon distributions.
- Outgoing J/ψ's will be *azimuthally decorrelated* wrt back-to-back kinematics of collinear parton calculations.
- The J/ψ -pair carries a *finite transverse momentum*.
- k_T factorization matrix elements by Baranov [Phys.Rev. D84 (2011)].
- We stick to the **color-singlet mechanism**, where the $c\bar{c} \to J/\psi$ vertex is fixed through the wf. at the origin.

How to separate SPS & DPS

fraction of xsec surviving p_{τ} -cut

azimuthal angle between J/ψ 's

- Box-contribution strongly decorrelated in azimuth
- Putting lower cutoff on p_τ of J/ψ, we approach the dijet-like back-to-back limit
- But DPS-strength is lost disproportionally...
 → not a very efficient discriminator

Baranov, Snigirev, Zotov, Szczurek & WS, Phys Rev D87 (2013)

Rapidity distance between J/ψ 's

- Box mechanism always has a parton with off-shellness growing with cm-energy, therefore strong energy dependence.
- Rapidity separation is an excellent discriminator!
- ... but does this clean separation of SPS and DPS hold beyond the box-diagram mechanism?

Large rapidity distances in x-pair production

- The even C-parity χ-states can be produced via the t-channel gluon exchange. There is no divergence at small t as quark-antiquark pairs are color-neutral.
- → Due to the vector exchange, cross section is constant at high energies
- → The "box" contribution for χ -states is suppressed by a small parameter $\left(\frac{|R'(0)|^2}{M_\chi^2 |R(0)|^2}\right)^2 \sim 10^{-3}$

The $g^*g^* \rightarrow \chi$ vertices A.Cisek, WS, A. Szczurek, Phys Rev D (2018) $V^{ab}_{\mu\nu}(J, J_z; q_1, q_2) = -i \, 4\pi \alpha_S \, \delta^{ab} \, \frac{2R'(0)}{\sqrt{\pi N_z M^3}} \, \sqrt{3} \cdot T_{\mu\nu}(J, J_z; q_1, q_2) \,,$ μ, q_1 $T_{\mu\nu}(0,0;q_1,q_2) = \frac{1}{\sqrt{3}} \frac{M^2}{(2q_1\cdot q_2)^2}$ $\chi_{c}(J), J = 0, 1, 2$ $\left\{g_{\mu\nu}\left(6(q_1\cdot q_2) - q_1^2 - q_2^2 + \frac{(q_2^2 - q_1^2)^2}{M^2}\right)\right\}$ $+ q_{1\mu}q_{2\nu} 2\left(\frac{q_1^2+q_2^2}{M^2}-1\right) + q_{2\mu}q_{1\nu} 2\left(\frac{q_1^2+q_2^2}{M^2}-3\right)$ $+ q_{1\mu}q_{1\nu}\frac{4q_2^2}{M^2} + q_{2\mu}q_{2\nu}\frac{4q_1^2}{M^2} \}$ u,q_2 ک $T_{\mu\nu}(1, J_z; q_1, q_2) = \frac{i}{\sqrt{2}M} \frac{1}{(q_1 \cdot q_2)} \left\{ (q_1^2 - q_2^2) \epsilon_{\mu\nu\alpha\beta} (q_1 + q_2)^{\alpha} \epsilon^{\beta} (J_z) \right\}$ $+ \frac{q_1^2 + q_2^2}{(q_1 \cdot q_2)} (a_\mu q_{1\nu} - a_\nu q_{2\mu}) + 2(a_\nu q_{1\mu} - a_\mu q_{2\nu}) \Big\}$ $a_{\mu} = \epsilon_{\mu\rho\alpha\beta} q_1^{\rho} q_2^{\alpha} \epsilon^{\beta} (J_z) \,.$ $T_{\mu\nu}(2, J_z; q_1, q_2) = \frac{-M^2}{(2q_1 \cdot q_2)^2} \Big\{ -g_{\mu\nu}(q_2 - q_1)^{\alpha} (q_2 - q_1)^{\beta} \epsilon_{\alpha\beta}(J_z) + 4(q_1 \cdot q_2) \epsilon_{\mu\nu}(J_z) \Big\}$

$$+2(q_2-q_1)^{\alpha}\epsilon_{\alpha\nu}(J_z)q_{2\mu}-2(q_2-q_1)^{\alpha}\epsilon_{\alpha\mu}(J_z)q_{1\nu}\bigg\},\,$$

- All vertices fulfill the QED-like Ward identities and can be used for external spacelike off-shell gluons
- The vertex for the axial vector, J=1, vanishes for on-shell external photons/gluons, in agreement with Landau-Yang theorem

Amplitudes & cross sections

$$\begin{split} \mathbf{M}_{\mu\nu}^{ab}(J_1, J_{1z}, J_2, J_{2z}) &= V_{\mu\alpha}^{ac}(J_1, J_{1z}; q_1, p_1 - q_1) \frac{-g^{\alpha\beta} \delta_{cd}}{\hat{t}} V_{\beta\nu}^{db}(J_2, J_{2z}; p_2 - q_2, q_2) \\ &+ V_{\mu\alpha}^{ac}(J_2, J_{2z}; q_1, p_2 - q_1) \frac{-g^{\alpha\beta} \delta_{cd}}{\hat{u}} V_{\beta\nu}^{db}(J_1, J_{1z}; p_1 - q_2, q_1), \end{split}$$

$$\frac{d\sigma(pp \to \chi\chi X)}{dy_1 d^2 \vec{p}_{1T} dy_2 d^2 \vec{p}_{2T}} = \frac{1}{16\pi^2 (x_1 x_2 s)^2} \frac{1}{1 + \delta_{ij}} \int \frac{d^2 \vec{q}_{1T}}{\pi \vec{q}_{1T}^2} \frac{d^2 \vec{q}_{2T}}{\pi \vec{q}_{2T}^2} \overline{|\mathcal{M}_{g^* g^* \to \chi_c(i)\chi_{cJ}}^{\text{off-shell}}|^2} \\ \times \ \delta^{(2)} \left(\vec{q}_{1T} + \vec{q}_{2T} - \vec{p}_{1T} - \vec{p}_{2T}\right) \mathcal{F}(x_1, \vec{q}_{1T}^2, \mu_F^2) \mathcal{F}(x_2, \vec{q}_{2T}^2, \mu_F^2) \ .$$

unintegrated gluon distributions

$$xg(x,\mu_F^2) = \int^{\mu_F^2} \frac{d\bar{q}_T^2}{\bar{q}_T^2} \,\mathcal{F}(x,\bar{q}_{1T}^2,\mu_F^2)$$

x-pair production: single particle distributions

Contribution from $\chi_c(1)$ overall smaller \rightarrow recall vanishing of the gg-vertex on-shell

A.Cisek, WS, A. Szczurek, Phys Rev D (2018)

x-pair production: single particle distributions

Spectra containing $\chi_c(1)$ tend to be harder \rightarrow again property of gg-vertex

A.Cisek, WS, A. Szczurek, Phys Rev D (2018)

- SPS & DPS of the similar magnitude (with σ_{eff} =15 mb).
- Deep dip in SPS distribution

$g^*g^* \rightarrow J/\psi J/\psi$ processes that survive at high Δy

- "quasi-diffractive" exchange of 2 gluons in symmetric color octet
- A type of "colored Pomeron", purely imaginary amplitude very similar to 2 gluon exchange in γγ-scattering [Ginzburg, Panfil & Serbo 1988].

 Very small contribution, vast region of phase space "blocked" for final state gluons

Baranov, Snigirev, Zotov, Szczurek & WS, Phys Rev D87 (2013)

Contribution of χ-pairs to J/ψ-pair production

Br $(\chi_c(0) \rightarrow J/\psi\gamma) = 1.26 \pm 0.06\%$ Br $(\chi_c(1) \rightarrow J/\psi\gamma) = 33.9 \pm 1.2\%$, Br $(\chi_c(2) \rightarrow J/\psi\gamma) = 19.2 \pm 0.7\%$

ATLAS data on $J/\psi J/\psi$ ATLAS Coll. Eur.Phys.J C 77 (2017)

- cuts on J/ψ : $|y^{J/\psi}| < 2.1, p_T^{J/\psi} > 8.5 \,\text{GeV}.$
- additional muon cuts: $|\eta^{\mu}| < 2.3, p_T^{\mu} > 2.5 \text{ GeV}, 2.8 < M_{\mu\mu} < 3.4 \text{ GeV}.$

- → Quasi-diffractive 2g-exchange & χ-feed-down nicely mimic DPS in the Δy distribution
- Unfortunately they are lacking in pair transverse momentum
- → Here we used σ_{eff} =15 mb.
- → Similar situation for CMS data.

Higher orders ?

I. Babiarz, a poster @ Meson 2018

- At high energy, a large phasespace for gluon emission opens up → *potentially large* α_s*log(s) corrections.*
- In the kinematic range of interest, virtual corrections seem to compensate the real ones & the overall higher order correction is small.

Summary

- Large DPS contribution in the charm sector → charmonium pair production as a probe of DPS
- Rapidity difference between J/ψ is an excellent discriminator between single (SPS) and double parton scattering (DPS) mechanisms
- Observation of small σ_{eff} leads to the quest for SPS mechanisms that *survive* at large pair invariant mass/large rapidity distance Δy .
- χ_c-pairs are produced via single t & u-channel gluon exchange → broad distributions in Δy
- Two-gluon exchange in $gg \rightarrow J/\psi J/\psi$ and feed-down from $\chi_c \chi_c$ very much **mimic the behaviour of DPS** but seem to be too small in strength to replace it.