Meson Investigations by the MAMI A2 Collaboration

15th International Workshop on Meson Physics

Philippe Martel
Institute for Nuclear Physics
Johannes Gutenberg University of Mainz

Krakow, Poland - 12 June 2017

- Thanks to the organizers for the invitation to speak

Thanks

- Thanks to the organizers for the invitation to speak
- Thanks to all of you for still being here (perhaps to the rain for 'encouraging' you all to come to the last day)

Thanks

- Thanks to the organizers for the invitation to speak
- Thanks to all of you for still being here (perhaps to the rain for 'encouraging' you all to come to the last day)
- Since we're here, let's talk about some meson physics at MAMI

Outline

1. What should we do
2. What can we do
3. What have we done
4. What are we doing

What should we do

Should we study mesons?

- We've had four days of talks regarding this...

Should we study mesons?

- We've had four days of talks regarding this...
- If you are not already convinced, I'm not going to change your mind

Should we study mesons?

- We've had four days of talks regarding this...
- If you are not already convinced, I'm not going to change your mind
- Preferred stance of experimentalists: "Just let me go measure things."

Should we study mesons?

- We've had four days of talks regarding this...
- If you are not already convinced, I'm not going to change your mind
- Preferred stance of experimentalists: "Just let me go measure things."
- Of course it's always nice if your work is beneficial, so what would the theorists like to have...

Beam		Target			Recoil		
		x	y	z			
					x^{\prime}	y^{\prime}	z^{\prime}
Unpolarized	σ		T			P	
Linear	Σ	H	P	G	$O_{x^{\prime}}$	T	$O_{z^{\prime}}$
Circular		F		E	$C_{x^{\prime}}$		$C_{z^{\prime}}$

Beam	Target/Recoil									
	x			y			z			
	x^{\prime}	y^{\prime}	z^{\prime}	x^{\prime}	y^{\prime}	z^{\prime}	x^{\prime}	y^{\prime}	z^{\prime}	
Unpolarized	$T_{x^{\prime}}$		$T_{z^{\prime}}$		Σ		$L_{x^{\prime}}$		$L_{z^{\prime}}$	
Linear	$L_{z^{\prime}}$	E	$L_{x^{\prime}}$	$C_{z^{\prime}}$	σ	$C_{x^{\prime}}$	$T_{z^{\prime}}$	F	$T_{x^{\prime}}$	
Circular		G		$O_{z^{\prime}}$		$O_{x^{\prime}}$		H		

Observables

| Beam | | Target | | | Recoil | | Both | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | x | y | z | | | x | |
| | | | | | x^{\prime} | z^{\prime} | x^{\prime} | z^{\prime} |
| Unpolarized | σ | | T | | | | $T_{x^{\prime}}$ | $T_{z^{\prime}}$ |
| Linear | Σ | H | P | G | $O_{x^{\prime}}$ | $O_{z^{\prime}}$ | $L_{z^{\prime}}$ | $L_{x^{\prime}}$ |
| Circular | | F | | E | $C_{x^{\prime}}$ | $C_{z^{\prime}}$ | | |

As L. Tiator described:

- 16 total observables
- 8 observables without recoil polarization
- 8 observables without target polarization
- Do not need all 16 to have complete picture

What can we do

Mainz Microtron (MAMI) e ${ }^{-}$Beam

- Injector $\rightarrow 3.5 \mathrm{MeV}$
- RTM1 $\rightarrow 14.9 \mathrm{MeV}$
- RTM2 $\rightarrow 180 \mathrm{MeV}$
- RTM3 $\rightarrow 883 \mathrm{MeV}$
- $\mathrm{HDSM} \rightarrow 1.6 \mathrm{GeV}$

Polarized Photon Beam

A high energy electron can produce Bremsstrahlung ('braking radiation') photons when slowed down by a material.

- Longitudinally polarized electron beam produces circularly polarized photon beam (helicity transfer)
- P_{e} measured with a Mott polarimeter before the RTMs.

- Circular beam helicity flipped by alternating the e^{-}beam polarization ($\approx 1 \mathrm{~Hz}$).

$$
P_{\gamma}=P_{e} \frac{4 E_{\gamma} E_{e}-E_{\gamma}^{2}}{4 E_{e}^{2}-4 E_{\gamma} E_{e}+3 E_{\gamma}^{2}}
$$

Polarized Photon Beam

A high energy electron can produce Bremsstrahlung ('braking radiation') photons when slowed down by a material.

- Diamond radiator produces linearly polarized photon beam (coherent Bremsstrahlung)
- Polarization determined by fitting the Bremsstrahlung distribution.
- Linear beam orientation typically
 flipped every two hours.

Photon Tagging

- e^{-}beam with energy E_{0}, strikes radiator producing Bremsstrahlung photon beam with energy distribution from 0 to E_{0}.
- Residual e^{-}paths are bent in a spectrometer magnet.
- With proper magnetic field, array of detectors determines the e^{-}energy, and 'tags' the photon energy by energy conservation.

Targets

Polarized frozen spin butanol target

- Dynamic Nuclear Polarization (DNP)
- Butanol $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)$ for polarized protons or D-Butanol $\left(\mathrm{C}_{4} \mathrm{D}_{9} \mathrm{OD}\right)$ for polarized deuterons
- $P_{T}^{\max }>90 \%, \tau>1000 \mathrm{~h}$

Unpolarized targets

- LH2/LD2
- ${ }^{4} \mathrm{He}$
- Solid targets (C, AI, Pb, etc.)

Detectors

Crystal Ball (CB)

- 672 Nal Crystals
- 24 Particle Identification Detector (PID) Paddles
- 2 Multiwire Proportional Chambers (MWPCs)

Two Arms Photon
Spectrometer (TAPS)

- $366 \mathrm{BaF}_{2}$ and $72 \mathrm{PbWO}_{4}$ Crystals
- 384 Veto Paddles

What have we done

Busy Two Years

- Since Meson2016, we've been quite productive...

Busy Two Years

- Since Meson2016, we've been quite productive...
- Taken
- 3 weeks polarized target data
- 6 weeks recoil polarimeter data
- 6 weeks ${ }^{4} \mathrm{He}$ target data
- 3 weeks LD2 data
- 16 weeks LH2 data
- 2 weeks of tests
- Total $=36$ weeks (feels like more)

Busy Two Years

- Since Meson2016, we've been quite productive...
- Taken
- 3 weeks polarized target data
- 6 weeks recoil polarimeter data
- 6 weeks ${ }^{4} \mathrm{He}$ target data
- 3 weeks LD2 data
- 16 weeks LH2 data
- 2 weeks of tests
- Total $=36$ weeks (feels like more)
- 1 EPJA, 1 PRL, 1 PLB, and 5 PRCs published
- 1 PRC and 1 PRD accepted
- 1 PLB submitted

$\Sigma-\gamma p \rightarrow \pi^{0} p$ [S. Gardner, EPJA 52, 333 (2016)]

Well that's a lot of data.

$\Sigma-\gamma p \rightarrow \pi^{0} p$ [S. Gardner, EPJA 52, 333 (2016)]

That's a little bit better.

$\Sigma-\gamma p \rightarrow \pi^{0} p$ [S. Gardner, EPJA 52, 333 (2016)]

$$
\check{\Sigma}(W, \theta)=\sigma_{0}(W, \theta) \Sigma(W, \theta)=\frac{q}{k} \sum_{n=2}^{2 l_{\max }} a_{n}^{\Sigma}(W) P_{n}^{2}(\cos \theta)
$$

$\gamma p \rightarrow \eta p / \gamma p \rightarrow \eta^{\prime} p$ [V. Kashevarov, PRL 118, 212001 (2017A2

Present A2 data in magenta, previous in blue, CLAS [M. Williams et al., PRC 80, 045213 (2009)] in black crosses, CBELSA/TAPS [V. Crede et al., PRC 80 055202 (2009)] in open circles

$\gamma p \rightarrow \eta p / \gamma p \rightarrow \eta^{\prime} p$ [V. Kashevarov, PRL 118, 212001 (2017A2

Present A2 data in magenta, CBELSA/TAPS [V. Crede et al., PRC 80055202 (2009)] in open circles, with η MAID-2003 [Nucl. Phys. A700, 429 (2002)] (black dotted), SAID-GE09 [Phys. Rev. C 82, 035208 (2010)] (blue), BG20142 [EPJA 47, 153 (2011); EPJA 48, 15 (2012)] (magenta)

Transition Form Factors (see talk by L. Heijkenskjoeld in Parallel Session B4)

- Pion-exchange term $a_{\mu}^{\pi^{0}}$ in HLbL scattering
- Decay width of $\pi^{0} \rightarrow e^{+} e^{-}$

$\eta \rightarrow e^{+} e^{-} \gamma$ [S. Prakov, PRC 95, 035208 (2017)]

$\omega \rightarrow \pi^{0} e^{+} e^{-}$[S. Prakov, PRC 95, 035208 (2017)]

Philippe Martel - Meson A2 - What have we done

E - $\gamma d \rightarrow \eta X$ [L. Witthauer, PRC 95055201 (2017)]

Easier to study protons than neutrons, sometimes neutron results unexpected

- Narrow structure previously seen in $\gamma n \rightarrow \eta n$ at $\mathrm{W} \approx 1685 \mathrm{MeV}$
- Seems to only appear in $\sigma_{1 / 2}$ (S_{11} / P_{11} partial waves)
- Large $N(1675) 5 / 2^{-}$(MAID) or BnGa with narrow P_{11} ruled out

E - $\gamma d \rightarrow \eta X$ [L. Witthauer, PRC 95055201 (2017)]

$A 2$

E - $\gamma d \rightarrow \eta X$ [L. Witthauer, PRC 95055201 (2017)]

Lots of proton data, often missing neutron data

- No free neutron target (I think you've heard)
- Can use deuterium (or helium, or...), but FSI
- If FSI are similar for protons and neutrons in deuterium, perhaps the former can be used to correct the latter

$\sigma-\gamma d \rightarrow \pi^{0} X$ [M. Dieterle, PRC (Accepted)]

Philippe Martel - Meson A2 - What have we done

$\sigma-\gamma d \rightarrow \pi^{0} X$ [M. Dieterle, PRC (Accepted)]

Philippe Martel - Meson A2 - What have we done

$\sigma-\gamma d \rightarrow \pi^{0} X$ [M. Dieterle, PRC (Accepted)]

$\sigma-\gamma d \rightarrow \pi^{0} X$ [M. Dieterle, PRC (Accepted)]

$\sigma-\gamma d \rightarrow \pi^{0} X$ [M. Dieterle, PRC (Accepted)]

$\sigma-\gamma d \rightarrow \pi^{0} X$ [M. Dieterle, PRC (Accepted)]

Three body final states (decay modes and missing resonances)

[^0]

- The two helicity components contribute identically
- True for both participant protons and neutrons
- Absolute couplings for protons and neutrons are identical
- Contributing nucleon resonances (threshold up to inv. masses of 1.9 GeV) have almost equal electromagnetic helicity couplings $A_{1 / 2}^{n, p}$ and $A_{3 / 2}^{n, p}$
- Typical for Δ resonances, identical $A_{1 / 2}$ and $A_{3 / 2}$ components for any nucleon target only possible for $J \geq 3 / 2$ states, constrains possible

$\gamma d \rightarrow \pi^{0} \eta X$ [A. Kaeser, PLB (Submitted)]

What are we doing

ナ

A2 and CBELSA/TAPS [PRL 109 (2012) 102001] data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], MAID-07 [EPJA 34 (2007) 69], and SAID-CM12 [PRC 86 (2012) 015202]
\circlearrowleft

A2 and CBELSA/TAPS [PRL 109 (2012) 102001] data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], MAID-07 [EPJA 34 (2007) 69], and SAID-CM12 [PRC 86 (2012) 015202]

G $-\gamma p \rightarrow \pi^{+} n$ (K. Spieker, Bonn, Preliminary)

σ

A2 data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], MAID-07 [EPJA 34 (2007) 69], and SAID-CM12 [PRC 86 (2012) 015202]

G $-\gamma p \rightarrow \pi^{+} n$ (K. Spieker, Bonn, Preliminary)

σ

A2 data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], MAID-07 [EPJA 34 (2007) 69], and SAID-CM12 [PRC 86 (2012) 015202]

E $-\gamma p \rightarrow \pi^{0} p$ (F. Afzal, Bonn, Preliminary)

A2 and CBELSA/TAPS [PRL 112 (2014) 012003] data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], JuBo 2016-3.1, and SAID-CM12 [PRC 86 (2012) 015202]

E $-\gamma p \rightarrow \pi^{0} p$ (F. Afzal, Bonn, Preliminary)

A2 and CBELSA/TAPS [PRL 112 (2014) 012003] data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], JuBo 2016-3.1, and SAID-CM12 [PRC 86 (2012) 015202]

E $-\gamma p \rightarrow \pi^{0} p$ (F. Afzal, Bonn, Preliminary)

A2 and CBELSA/TAPS [PRL 112 (2014) 012003] data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], JuBo 2016-3.1, and SAID-CM12 [PRC 86 (2012) 015202]

E $-\gamma p \rightarrow \eta p$ (F. Afzal, Bonn, Preliminary)

A2 and CBELSA/TAPS [PRL 112 (2014) 012003] data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], JuBo 2016-3.1, and SAID-GE09 [PRC 86 (2012) 015202]

E $-\gamma d \rightarrow \pi^{0} X$ (F. Cividini, Mainz, Preliminary)

 eliminary results

- 2014-2015 A2 Data

MAID 2007 free proton + free neutron

- From A. Fix based on A. Fix and H. Arenhövel, Phys. Rev. C 72064004

- MAID 2007 + IA, from A. Fix -MAID 2007 + IA + FSI, from A. Fix (based on A. Fix and H. Arenhövel, Phys. Rev. C 72 064005)

- MAID 2007 + IA, from A. Fix —MAID 2007 + IA + FSI, from A. Fix (based on A. Fix and H. Arenhövel, Phys. Rev. C 72064005)

Talks maybe you now wish you had seen

- F. Cividini (E - $\gamma d \rightarrow \pi^{0} X$ - Parallel Session A6)
- C. Collicott (Symmetry violating η decays - Parallel Session C5)
- D. Ghosal ($\gamma d \rightarrow \pi^{0} \pi^{+/-X}$ - Parallel Session A6)
- L. Heijkenskjoeld (Transition Form Factors - Parallel Session B4)

Special shout-out to P. Adlarson, whose paper on $\eta^{\prime} \rightarrow \pi^{0} \pi^{0} \eta$ was just accepted by PRD, and whose results I did not have time to show after realizing that he was not presenting them here...

Conclusions

- We've measured a bunch of stuff
- $\sigma, \Sigma, T, F, E, G$
- Looking at proton and neutron (via deuterium, studying FSI)
- Investigating multi-meson final states
- We're still measuring stuff
- E and G on proton and neutron
- Recoil observables
- We'll continuing measuring stuff
- Transition Form Factors
- Future end-point-tagger runs for η^{\prime}
- Active targets to improve threshold region

Conclusions

- We've measured a bunch of stuff
- $\sigma, \Sigma, T, F, E, G$
- Looking at proton and neutron (via deuterium, studying FSI)
- Investigating multi-meson final states
- We're still measuring stuff
- E and G on proton and neutron
- Recoil observables
- We'll continuing measuring stuff
- Transition Form Factors
- Future end-point-tagger runs for η^{\prime}
- Active targets to improve threshold region
- Thank you for your attention!

$\sigma-\gamma d \rightarrow \pi^{0} X$ [M. Dieterle, PRC (Accepted)]

$\sigma-\gamma d \rightarrow \pi^{0} X$ [M. Dieterle, PRC (Accepted)]

$\gamma p \rightarrow \pi^{0} \eta p$ [V. Sokhoyan, PRC 97055212 (2018)]

$\gamma p \rightarrow \pi^{0} \eta p$ [V. Sokhoyan, PRC 97055212 (2018)]

Frozen Spin Target

How are the protons actually polarized? Through Dynamic Nuclear Polarization (DNP):

- Cool target to 0.2 Kelvin.
- Use 2.5 Tesla magnet to align electron spins.
- Pump $\approx 70 \mathrm{GHz}$ microwaves (just above, or below, the Electron Spin Resonance frequency), causing spin-flips between the electrons and protons.
- Cool target to 0.025 Kelvin, 'freezing' proton spins in place.
- Remove polarizing magnet.
- Energize 0.6 Tesla 'holding' coil in the cryostat to maintain the polarization.
- Relaxation times > 1000 hours.
- Polarizations up to 90%.

Crystal Ball - Charged Particle Detection

TAPS - Charged Particle Detection

Veto scintillators

- 5 mm plastic scintillators in front of each crystal
- Same method as PID (plot $\Delta \mathrm{E}$ vs E)

Time of Flight

- Given its increased distance from the target, massive particles take noticeably longer to reach TAPS
- Plot time vs E, identify nucleons

TAPS dE vs E

TAPS Particle TOF

Active Target

Requirements

- Polarizable Scintillator
- High light output
- High rate capability
- Low thermal energy input
- Detectors working at 4 K

Targets from UMass Amherst
 Tested at MAMI - Pol > 50\%

[^0]: A2 data (\triangle / \bigcirc), CBELSA/TAPS (\star / \triangle), GRAAL (\diamond), old A2 (\square) data; BnGa: total (dash-dotted), $\Delta(1232) \eta$ (dashed), $N(1535) \pi^{0}$ (dotted), and $a_{0}(980) p$ (long-dash-dotted); and Mainz: total (solid), resonant (long-dashed), background (dash-double-dotted), and Born (dash-triple-dotted)

