Meson Investigations by the MAMI A2 Collaboration

15th International Workshop on Meson Physics

Philippe Martel

Institute for Nuclear Physics Johannes Gutenberg University of Mainz Krakow, Poland - 12 June 2017

• Thanks to the organizers for the invitation to speak

- Thanks to the organizers for the invitation to speak
- Thanks to all of you for still being here (perhaps to the rain for 'encouraging' you all to come to the last day)

- Thanks to the organizers for the invitation to speak
- Thanks to all of you for still being here (perhaps to the rain for 'encouraging' you all to come to the last day)
- Since we're here, let's talk about some meson physics at MAMI

- 1. What should we do
- 2. What can we do
- 3. What have we done
- 4. What are we doing

What should we do

• We've had four days of talks regarding this...

- We've had four days of talks regarding this...
- If you are not already convinced, I'm not going to change your mind

- We've had four days of talks regarding this...
- If you are not already convinced, I'm not going to change your mind
- Preferred stance of experimentalists: "Just let me go measure things."

- We've had four days of talks regarding this...
- If you are not already convinced, I'm not going to change your mind
- Preferred stance of experimentalists: "Just let me go measure things."
- Of course it's always nice if your work is beneficial, so what would the theorists like to have...

Beam		Target			Recoil			
		х	у	Z				
					x′	y′	z′	
Unpolarized	σ		Т			Р		
Linear	Σ	Н	Р	G	$O_{x'}$	Т	$O_{z'}$	
Circular		F		Ε	$C_{x'}$		$C_{z'}$	

Beam	Target/Recoil								
	х			У			Z		
	x′	y′	z′	x′	y′	z′	x′	y′	z′
Unpolarized	$T_{x'}$		$T_{z'}$		Σ		$L_{x'}$		$L_{z'}$
Linear	$L_{z'}$	Ε	$L_{x'}$	$C_{z'}$	σ	$C_{x'}$	$T_{z'}$	F	$T_{x'}$
Circular		G		$O_{z'}$		$O_{x'}$		Н	

Beam		Target			Recoil		Both	
		х	У	z			х	
					x′	z′	x′	z′
Unpolarized	σ		Т				$T_{x'}$	$T_{z'}$
Linear	Σ	Н	Р	G	$O_{x'}$	$O_{z'}$	$L_{z'}$	$L_{x'}$
Circular		F		Ε	$C_{x'}$	$C_{z'}$		

As L. Tiator described:

- 16 total observables
- 8 observables without recoil polarization
- 8 observables without target polarization
- Do not need all 16 to have complete picture

What can we do

Mainz Microtron (MAMI) e⁻ Beam

- Injector \rightarrow 3.5 MeV
- RTM1 \rightarrow 14.9 MeV
- RTM2 \rightarrow 180 MeV
- RTM3 \rightarrow 883 MeV
- HDSM \rightarrow 1.6 GeV

A high energy electron can produce Bremsstrahlung ('braking radiation') photons when slowed down by a material.

- Longitudinally polarized electron beam produces circularly polarized photon beam (helicity transfer)
- *P_e* measured with a Mott polarimeter before the RTMs.
- Circular beam helicity flipped by alternating the e⁻ beam polarization (\approx 1 Hz).

A high energy electron can produce Bremsstrahlung ('braking radiation') photons when slowed down by a material.

- Diamond radiator produces linearly polarized photon beam (coherent Bremsstrahlung)
- Polarization determined by fitting the Bremsstrahlung distribution.
- Linear beam orientation typically flipped every two hours.

Photon Tagging

- e⁻ beam with energy E₀, strikes radiator producing Bremsstrahlung photon beam with energy distribution from 0 to E₀.
- Residual e⁻ paths are bent in a spectrometer magnet.
- With proper magnetic field, array of detectors determines the e⁻ energy, and 'tags' the photon energy by energy conservation.

Targets

Polarized frozen spin butanol target

- Dynamic Nuclear Polarization (DNP)
- Butanol (C₄H₉OH) for polarized protons or D-Butanol (C₄D₉OD) for polarized deuterons
- $P_T^{max} > 90\%$, $\tau > 1000$ h

Unpolarized targets

- LH2/LD2
- ⁴He
- Solid targets (C, Al, Pb, etc.)

Crystal Ball (CB)

- 672 Nal Crystals
- 24 Particle Identification Detector (PID) Paddles
- 2 Multiwire Proportional Chambers (MWPCs)

Two Arms Photon Spectrometer (TAPS)

- 366 BaF₂ and 72 PbWO₄ Crystals
- 384 Veto Paddles

What have we done

• Since Meson2016, we've been quite productive...

- Since Meson2016, we've been quite productive...
- Taken
 - 3 weeks polarized target data
 - 6 weeks recoil polarimeter data
 - 6 weeks ⁴He target data
 - 3 weeks LD2 data
 - 16 weeks LH2 data
 - 2 weeks of tests
 - Total = 36 weeks (feels like more)

- Since Meson2016, we've been quite productive...
- Taken
 - 3 weeks polarized target data
 - 6 weeks recoil polarimeter data
 - 6 weeks ⁴He target data
 - 3 weeks LD2 data
 - 16 weeks LH2 data
 - 2 weeks of tests
 - Total = 36 weeks (feels like more)
- 1 EPJA, 1 PRL, 1 PLB, and 5 PRCs published
- 1 PRC and 1 PRD accepted
- 1 PLB submitted

$\Sigma - \gamma p \rightarrow \pi^0 p$ [S. Gardner, EPJA 52, 333 (2016)]

Well that's a lot of data.

$\Sigma - \gamma p \rightarrow \pi^0 p$ [S. Gardner, EPJA 52, 333 (2016)]

$\Sigma - \gamma p \rightarrow \pi^0 p$ [S. Gardner, EPJA 52, 333 (2016)]

$$\gamma p
ightarrow \eta p / \gamma p
ightarrow \eta' p$$
 [V. Kashevarov, PRL 118, 212001 (2017)

Present A2 data in magenta, previous in blue, CLAS [M. Williams et al., PRC 80, 045213 (2009)] in black crosses, CBELSA/TAPS [V. Crede et al., PRC 80 055202 (2009)] in open circles

$$\gamma p \rightarrow \eta p / \gamma p \rightarrow \eta' p$$
 [V. Kashevarov, PRL 118, 212001 (2017)

Present A2 data in magenta, CBELSA/TAPS [V. Crede et al., PRC 80 055202 (2009)] in open circles, with η MAID-2003 [Nucl. Phys. A700, 429 (2002)] (black dotted), SAID-GE09 [Phys. Rev. C 82, 035208 (2010)] (blue), BG2014-2 [EPJA 47, 153 (2011); EPJA 48, 15 (2012)] (magenta)

Transition Form Factors (see talk by L. Heijkenskjoeld in Parallel Session B4)

- Pion-exchange term $a_{\mu}^{\pi^0}$ in HLbL scattering
- Decay width of $\pi^0
 ightarrow e^+ e^-$

$\eta \to e^+ e^- \gamma$ [S. Prakov, PRC 95, 035208 (2017)]

Philippe Martel - Meson A2 - What have we done

$\omega \to \pi^0 e^+ e^-$ [S. Prakov, PRC 95, 035208 (2017)]

E - $\gamma d \rightarrow \eta X$ [L. Witthauer, PRC 95 055201 (2017)]

Easier to study protons than neutrons, sometimes neutron results unexpected

- Narrow structure previously seen in $\gamma n \rightarrow \eta n$ at W \approx 1685 MeV
- Seems to only appear in $\sigma_{1/2}$ (S_{11}/P_{11} partial waves)
- Large $N(1675)5/2^-$ (MAID) or BnGa with narrow P_{11} ruled out

E - $\gamma d \rightarrow \eta X$ [L. Witthauer, PRC 95 055201 (2017)]

E - $\gamma d \rightarrow \eta X$ [L. Witthauer, PRC 95 055201 (2017)]

$\sigma - \gamma d \rightarrow \pi^0 X$ [M. Dieterle, PRC (Accepted)]

Lots of proton data, often missing neutron data

- No free neutron target (I think you've heard)
- Can use deuterium (or helium, or...), but FSI
- If FSI are similar for protons and neutrons in deuterium, perhaps the former can be used to correct the latter

$\sigma - \gamma d \rightarrow \pi^0 X$ [M. Dieterle, PRC (Accepted)]

Philippe Martel - Meson A2 - What have we done

Philippe Martel - Meson A2 - What have we done

$\gamma p \rightarrow \pi^0 \eta p$ [V. Sokhoyan, PRC 97 055212 (2018)]

Three body final states (decay modes and missing resonances)

A2 data (\triangle / \bigcirc), CBELSA/TAPS (\star / \triangle), GRAAL (\diamondsuit), old A2 (\Box) data; BnGa: total (dash-dotted), \triangle (1232) η (dashed), *N*(1535) π^0 (dotted), and a_0 (980)p (long-dash-dotted); and Mainz: total (solid), resonant (long-dashed), background (dash-double-dotted), and Born (dash-triple-dotted)

$\gamma d \rightarrow \pi^0 \eta X$ [A. Kaeser, PLB (Submitted)]

- The two helicity components contribute identically
- True for both participant protons and neutrons
- Absolute couplings for protons and neutrons are identical
- Contributing nucleon resonances (threshold up to inv. masses of 1.9 GeV) have almost equal electromagnetic helicity couplings $A_{1/2}^{n,p}$ and $A_{3/2}^{n,p}$
- Typical for Δ resonances, identical A_{1/2} and A_{3/2} components for any nucleon target only possible for J ≥ 3/2 states, constrains possible

Philippe Martel - Meson A2 - What have we done

$\gamma d \rightarrow \pi^0 \eta X$ [A. Kaeser, PLB (Submitted)]

$\gamma d \rightarrow \pi^0 \eta X$ [A. Kaeser, PLB (Submitted)]

What are we doing

A2 and CBELSA/TAPS [PRL 109 (2012) 102001] data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], MAID-07 [EPJA 34 (2007) 69], and SAID-CM12 [PRC 86 (2012) 015202]

A2 and CBELSA/TAPS [PRL 109 (2012) 102001] data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], MAID-07 [EPJA 34 (2007) 69], and SAID-CM12 [PRC 86 (2012) 015202]

A2 data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], MAID-07 [EPJA 34 (2007) 69], and SAID-CM12 [PRC 86 (2012) 015202]

A2 data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], MAID-07 [EPJA 34 (2007) 69], and SAID-CM12 [PRC 86 (2012) 015202]

A2 and CBELSA/TAPS [PRL 112 (2014) 012003] data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], JuBo 2016-3.1, and SAID-CM12 [PRC 86 (2012) 015202]

A2 and CBELSA/TAPS [PRL 112 (2014) 012003] data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], JuBo 2016-3.1, and SAID-CM12 [PRC 86 (2012) 015202]

A2 and CBELSA/TAPS [PRL 112 (2014) 012003] data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], JuBo 2016-3.1, and SAID-CM12 [PRC 86 (2012) 015202]

A2 and CBELSA/TAPS [PRL 112 (2014) 012003] data, with BnGa 2014-02 and BnGa 2014-01 [EPJA 50 (2014) 74], JuBo 2016-3.1, and SAID-GE09 [PRC 86 (2012) 015202]

- F. Cividini (E $\gamma d \rightarrow \pi^0 X$ Parallel Session A6)
- C. Collicott (Symmetry violating η decays Parallel Session C5)
- D. Ghosal ($\gamma d \rightarrow \pi^0 \pi^{+/-} X$ Parallel Session A6)
- L. Heijkenskjoeld (Transition Form Factors Parallel Session B4)

Special shout-out to P. Adlarson, whose paper on $\eta' \to \pi^0 \pi^0 \eta$ was just accepted by PRD, and whose results I did not have time to show after realizing that he was not presenting them here...

- We've measured a bunch of stuff
 - σ, Σ, Τ, F, E, G
 - Looking at proton and neutron (via deuterium, studying FSI)
 - Investigating multi-meson final states
- We're still measuring stuff
 - E and G on proton and neutron
 - Recoil observables
- We'll continuing measuring stuff
 - Transition Form Factors
 - Future end-point-tagger runs for η^\prime
 - Active targets to improve threshold region

- We've measured a bunch of stuff
 - σ, Σ, Τ, F, E, G
 - Looking at proton and neutron (via deuterium, studying FSI)
 - Investigating multi-meson final states
- We're still measuring stuff
 - E and G on proton and neutron
 - Recoil observables
- We'll continuing measuring stuff
 - Transition Form Factors
 - Future end-point-tagger runs for η^\prime
 - Active targets to improve threshold region
- Thank you for your attention!

How are the protons actually polarized? Through Dynamic Nuclear Polarization (DNP):

- Cool target to 0.2 Kelvin.
- Use 2.5 Tesla magnet to align electron spins.
- Pump \approx 70 GHz microwaves (just above, or below, the Electron Spin Resonance frequency), causing spin-flips between the electrons and protons.
- Cool target to 0.025 Kelvin, 'freezing' proton spins in place.
- Remove polarizing magnet.
- Energize 0.6 Tesla 'holding' coil in the cryostat to maintain the polarization.
- Relaxation times > 1000 hours.
- Polarizations up to 90%.

Crystal Ball - Charged Particle Detection

Particle Identification Detector (PID)

- Barrel of 24 plastic paddles
- Each covers 15 $<\theta<$ 159°, and 15° in ϕ
- Plot ΔE in PID vs E in Nal

Multiwire Proportional Chamber (MWPC)

- Two chambers: anode wires sandwiched by two layers of cathode strips
- Voltage between wires and strips increases when gas is ionized

Anode Wire

TAPS - Charged Particle Detection

Veto scintillators

- 5mm plastic scintillators in front of each crystal
- Same method as PID (plot ΔE vs E)

Time of Flight

- Given its increased distance from the target, massive particles take noticeably longer to reach TAPS
- Plot time vs E, identify nucleons

TAPS dE vs E

Requirements

- Polarizable Scintillator
- High light output
- High rate capability
- Low thermal energy input
- Detectors working at 4K

Targets from UMass Amherst Tested at MAMI - Pol > 50%

