Aspects of Baryon Spectroscopy at ELSA

- opportunities with new BGO-OD experiment

Hartmut Schmieden Physikalisches Institut Universität Bonn

Outline

- physics motivation
- status baryon spectroscopy
- context c-quark sector
- BGO-OD experiment @ ELSA
- summary

ELSA

supported by DFG PN 50165297

Physics Motivation

hadronic resonances

Energy density distribution inside nucleon in LQCD simulation (F. Wilczek, Physics today 11/99 & 1/00)

hadronic resonances

models: excitation in mutual potential

G.S. Bali, Phys. Rep. 343 (2001) 1

Energy density distribution inside nucleon in LQCD simulation (F. Wilczek, Physics today 11/99 & 1/00)

H. Schmieden

3

Excited states: quark model

N* resonances

- parity pattern $+ \rightarrow + \rightarrow !?!$
- effective degrees of freedom ??

Excited states: quark model

 $[\]Lambda^*$ resonances

Excited states: quark model

 $[\]Lambda^*$ resonances

Excited states: Lattice QCD

Excited states: LQCD

- m_π = 396 MeV
- reproduces q-models
- wrong parity pattern
- but: no decays !

R.G. Edwards et al., Phys. Rev. D84 (2011) 074508

Status spectroscopy

	E. Klempt, A. Sarantsev, U. Thoma et al.				
	State	PDG 2010	BnGa PWA	PDG 2012	SAID PWA
	N(1860) 5/2+		*	**	
	N(1875) 3/2-		***	***	
	N(1880) 1/2+		**	**	
	N(1895) 1/2-		**	**	
 missing resonances ? 	N(1900) 3/2+	**	***	***	no evidence
	N(2060) 5/2-		***	**	
 relevant degrees of freedom ? 	N(2150) 3/2-		**	**	
	Δ(1940) 3/2-	*	*	**	no evidence
 3 const. quarks unlikely 	• inclusi	on of CLAS,	GRAAL, MAM	1I, ELSA dat	а

- confirmation of known resonances w/ improved parameters
- observation of few new states

n. Schmeden

• quark – diquark ??

L.Ya. Glozman and D.O. Riska, Phys. Rep. 268 (1996) 263

C. Garcia-Recio et al., PLB 582 (2004) 49

M. Lutz, E. Kolomeitsev, PLB 585 (2004) 243

• meson d.o.f. ?

e.g.

Status spectroscopy: $\Lambda(1405)$ L-QCD

context c-quark sector

universität**bonn**

context c-quark sector

X(3872)

 $M(\pi^+\pi^-l^+l^-) - M(l^+l^-)$

Forsaken pentaquark particle spotted at CERN

nature

Exotic subatomic species confirmed at Large Hadron Collider after earlier false sightings.

context c-quark sector

2.5 MeV/c²

Candidates per

data-fit 200

2000

150

uds sector – threshold dynamics

15

universität**bonn**

+ p -> K⁰ + Σ⁺ anomaly @ K* threshold

R. Ewald et al. (CB/TAPS), PLB 713 (2012)

+ p -> K⁰ + Σ⁺ anomaly @ K* threshold

R. Ewald et al. (CB/TAPS), PLB 713 (2012)

17

$\delta + p \rightarrow K^0 + \Sigma^+$ anomaly @ K* threshold

parallels between c and s sectors

	c-sector		s-sector		
	meson	baryon(s)	meson	baryon(s)	
state(s)	X(3872)	$P_c^*(4380/4450)$	$f_1(1420)$	$N^{*}(2030/2080)$	
π -exchange transition	$D^{*0}\bar{D}^0 + D^0\bar{D}^{*0}$	$\Lambda_c^* \bar{D} + \Sigma_c \bar{D}^*$	$K^*\bar{K} + K\bar{K}^*$	$\Lambda^*\bar{K}+\Sigma\bar{K}^*$	
quantum nos.	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	
3-body threshold	$D^0 ar{D}^0 \pi^0$	$\Sigma_c^+ \bar{D}^0 \pi^0$	$K\bar{K}\pi$	$\Sigma \bar{K} \pi^0$	
closed flavour channel	$J/\psi\;\omega$	$\chi_{c1} p$	$\phi f_0(500)$	ϕp	

parallels between c and s sectors

	c-sector		s-sector	
	meson	meson baryon(s)		baryon(s)
state(s)	X(3872)	$P_c^*(4380/4450)$	$f_1(1420)$	$N^{*}(2030/2080)$
π -exchange transition	$D^{*0}\bar{D}^0 + D^0\bar{D}^{*0}$	$\Lambda_c^* \bar{D} + \Sigma_c \bar{D}^*$	$K^*\bar{K} + K\bar{K}^*$	$\Lambda^*\bar{K}+\Sigma\bar{K}^*$
quantum nos.	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$
3-body threshold	$D^0 ar{D}^0 \pi^0$	$\Sigma_c^+ \bar{D}^0 \pi^0$	$K\bar{K}\pi$	$\Sigma ar{K} \pi^0$
closed flavour channel	$J/\psi\;\omega$	$\chi_{c1}p$	$\phi f_0(500)$	ϕp

parallels between c and s sectors

	c-sector		s-sector	
	meson	baryon(s)	meson	baryon(s)
state(s)	X(3872)	$P_c^*(4380/4450)$	$f_1(1420)$	$N^{*}(2030/2080)$
π -exchange transition	$D^{*0}\bar{D}^0 + D^0\bar{D}^{*0}$	$\Lambda_c^* D + \Sigma_c \bar{D}^*$	$K^*\bar{K} + K\bar{K}^*$	$\Lambda^*\bar{K}+\Sigma\bar{K}^*$
quantum nos.	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	$J^{PC} \neq 1^{++}$	$J^P = (3/2)^-$
3-body threshold	$D^0 ar{D}^0 \pi^0$	$\Sigma_c^+ \bar{D}^0 \pi^0$	$Kar{K}\pi$	$\Sigma ar{K} \pi^0$
closed flavour channel	$J/\psi \; \omega$	$\chi_{c1}p$	$\phi f_0(500)$	ϕp

\equiv >

parallels between c and s sectors

		c-sector		s-sector		
		meson	baryon(s)	meson	baryon(s)	
	state(s)	X(3872)	$P_c^*(4380/4450)$	$f_1(1420)$	$N^*(2030/2080)$	
	π -exchange transition	$D^{*0}\bar{D}^0 + D^0\bar{D}^{*0}$	$\Lambda_c^* \bar{D} + \Sigma_c \bar{D}^*$	$K^*\bar{K} + K\bar{K}^*$	$\Lambda^*\bar{K}+\Sigma\bar{K}^*$	
	quantum nos.	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	
	3-body threshold	$D^0 ar{D}^0 \pi^0$	$\Sigma_c^+ \bar{D}^0 \pi^0$	$K\bar{K}\pi$	$\Sigma ar{K} \pi^0$	
	closed flavour channel	$J/\psi\;\omega$	$\chi_{c1}p$	$\phi f_0(500)$	ϕp	

parallels between c and s sectors

	c-sector		s-sector		
	meson	baryon(s)	meson	baryon(s)	
state(s)	X(3872)	$P_c^*(4380/4450)$	$f_1(1420)$	$N^{*}(2030/2080)$	
π -exchange transition	$D^{*0}\bar{D}^0 + D^0\bar{D}^{*0}$	$\Lambda_c^* \bar{D} + \Sigma_c \bar{D}^*$	$K^*\bar{K} + K\bar{K}^*$	$\Lambda^*\bar{K}+\Sigma\bar{K}^*$	
quantum nos.	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	$J^{PC} = 1^{++}$	$J^P = (3/2)^-$	
3-body threshold	$D^0 ar{D}^0 \pi^0$	$\Sigma_c^+ \bar{D}^0 \pi^0$	$K\bar{K}\pi$	$\Sigma ar{K} \pi^0$	
closed flavour channel	$J/\psi\;\omega$	$\chi_{c1}p$	$\phi f_0(500)$	ϕp	

accelerator

28

BGO-OD experiment

spokespersons: P. Levi Sandri (Frascati) & H.S. (Bonn)

- combination of BGO central calorimeter & forward spectrometer
- high momentum resolution, excellent neutral & charged particle id

BGO-OD experiment

spokespersons: P. Levi Sandri (Frascati) & H.S. (Bonn)

- combination of BGO central calorimeter & forward spectrometer
- high momentum resolution, excellent neutral & charged particle id

BGO-OD experiment at ELSA

and in

Particle ID & event reconstruction

cross sections (bench marks)

36

First Results strangeness photoproduction

- overview channel ID
- x-sec for (extreme forward) K⁺ Y_{g.s.} close to final
- K⁺ Λ(1405)
 preliminary
- K⁰ Σ^{+,0} off proton & neutron targets event reconstruction

Overview $\gamma + p \rightarrow K^+ + X$

forward K⁺ in spectrometer

work of T. Jude

- Y* at very low t
- Identify Y* states from (K⁺ π^0) recoiling mass
 - $K^+ \Lambda \rightarrow K^+ \pi^0 n$ [missing neutron mass from ($K^+ \pi^0$) system]
 - $K^+ \Lambda(1405) \rightarrow K^+ \pi^0 \Sigma^0$ [missing Σ^0 mass from ($K^+ \pi^0$) system]
 - $K^+\Sigma(1385) \rightarrow K^+\pi^0\Lambda$ [missing Λ mass from ($K^+\pi^0$) system]

H. Schmieden

38

universitätbonn

Extracting K⁺ \Lambda /\Sigma signals

work of T. Jude

universität**bonn** ₃₉

$\gamma + p \rightarrow K^+ \Lambda_{g.s.} / \Sigma_{g.s.} \quad @ forward angles$

work of T. Jude

40

$\gamma + p \rightarrow K^+ \Lambda_{g.s.}$ @ forward angles

work of T. Jude

- unprecedented polar angular resolution
- ongoing analysis: statistical error to be reduced by 1/2
- more data to come

$\gamma + p \rightarrow K^+ + \Sigma(1193)$ full angular range

H. Schmieden

universität**bonn** 42

Λ(1405): neutral decay mode

work of G. Scheluchin

Number of Entries

30

20

10

-10

0

1300

- full reconstruction of decay topology
- $K^+\Lambda(1405) \rightarrow K^+\pi^0 \Sigma^0 \rightarrow K^+ \gamma \gamma \gamma \pi^- p$

 $\Theta^{cm}(K^+) = 0 \dots 45^{\circ}$

1500

≠⁰Λγ mass / MeV

1600

• complements CLAS data K. Moriya et al., Phys. Rev. C 88, 045201 (2013)

1400

K⁰ from *proton* target

w/ kinematic fit

K⁰ from *neutron* target

2 day test beam

work of T. Jude

- $K^0 \rightarrow 2\pi^0$ in BGO
- n(neutral) < 6
- n(charged) < 3

in addition:

• p from $\Sigma^0 \to p \pi^-$ in forward spectrometer

15

K⁰ from *neutron* target

2 day test beam

universitätbonn

- new BGO-OD experiment @ELSA
- unique for meson photoproduction
 - optimised for "forward kinematics" \IDR low-t processes
- first (very) preliminary results from s-sector
 - $K^+ \Lambda$ photoproduction at (very) forward angles
 - $K^+ \Sigma^0$ as check for Y* production
 - $K^+ \Lambda(1405)$ line shape (& cross sections)
 - $\mathbf{K}^0 \Sigma^+$ from proton target over K* threshold
 - K⁰ from neutron target (initial tests)
- open trigger: $KY^{(*)}$ data simultaneously, also η' etc.
- data taking ongoing

- new BGO-OD experiment @ELSA
- unique for meson photoproduc
 - optimised for "forward kinem
- first (very) preliminary results fi
 - $K^+ \Lambda$ photoproduction at (ver
 - $\mathbf{K}^+ \mathbf{\Sigma}^0$ as check for Y* produ
 - K⁺ ∧(1405) line shape (& cr
 - $K^0 \Sigma^+$ from proton target ove
 - K⁰ from neutron target (initia
- open trigger: KY(*) data simulta
- data taking ongoing

Thanks to:

- all collaborators in BGO-OD
- especially
 - S. Alef, P. Bauer, K. Kohl, B. Reitz,
 - G. Scheluchin, Ch. Tillmanns,
 - D. Spülbeck (present PhD, Master's and Bachelor students), and T. Jude (postdoc)
- ELSA crew for beam
- DFG for financial support

$\gamma p \rightarrow \eta' p$ @ threshold

all time **GRAAL** data

- nodal structure
 - → interference w/ P/D-wave
- quickly decreasing w/ E_γ
 → narrow structure
- ideal for BGO-OD
 → recoil p in OD spectrometer

K⁺ ID in BGO Ball

T.C. Jude et al., PLB 735 (2014) 112

