

15th International Workshop on Meson Physics 7th - 12th June 2018, Kraków, Poland

Energy and system dependence of light- and heavy-hadron production in pp, p-Pb, Xe-Xe and Pb-Pb collisions at the LHC

Jacek Otwinowski (IFJ PAN, Kraków) On behalf of the ALICE Collaboration

A Large Ion Collider Experiment aliceinfo.cern.ch

www.ifj.edu.pl

25 years of ALICE Collaboration

<u> https://indico.cern.ch/event/653848/</u>

A Large Ion Collider Experiment

- Excellent particle identification capabilities in the large p_{T} range 0.1-20 GeV/c
- Good momentum resolution ~1-5% for $p_{T} = 0.1-50 \text{ GeV}/c$

ALICE at work since 2009

Year	√s _{NN} (TeV)	L _{int}	
2010-2011 2015 by the end of 2018	2.76 5.02 5.02	~75 μb ⁻¹ ~250 μb ⁻¹ ~1 nb ⁻¹	ALICE
2017	5.44	~0.3 μb⁻¹	
2013 2016	5.02 5.02, 8.16	~15 nb ⁻¹ ~3 nb ⁻¹ , ~25 nb ⁻¹	Pb-Pb 5.02 TeV
2009-2013 2015-2017	0.9, 2.76, 7, 8 5.02, 13	~200 μb ⁻¹ , ~100 μb ⁻¹ , ~1.5 pb ⁻¹ , ~2.5 pb ⁻¹ ~1.3 pb ⁻¹ , ~25 pb ⁻¹	Run 246/08 Timestang 2015-11-25 11:25:04(UTC) System ProPer Energy: 5:02 TeV
	Year 2010-2011 2015 <i>by the end of 2018</i> 2017 2013 2016 2009-2013 2015-2017	Year Vs _{NN} (TeV) 2010-2011 2.76 2015 5.02 by the end of 2018 5.02 2017 5.44 2013 5.02 2016 5.02, 8.16 2009-2013 0.9, 2.76, 7, 8 2015-2017 5.02, 13	YearVs_N (TeV)Lint2010-20112.76~75 μb ⁻¹ 20155.02~250 μb ⁻¹ 20155.02~1 nb ⁻¹ by the end of 20185.02~1 nb ⁻¹ 20175.44~0.3 μb ⁻¹ 20135.02~15 nb ⁻¹ 20165.02, 8.16~3 nb ⁻¹ , ~25 nb ⁻¹ 2009-20130.9, 2.76, 7, 8~200 μb ⁻¹ , ~100 μb ⁻¹ , ~1.5 pb ⁻¹ , ~2.5 pb ⁻¹ 2015-20175.02, 13~1.3 pb ⁻¹ , ~25 pb ⁻¹

- Energy and system dependence studies of particle production are possible
- Large statistics of pp, p-Pb and Pb-Pb collisions at the same Vs_{NN}
 - \rightarrow precise comparison studies

Particle identification with ALICE

Pb-Pb collisions at $Vs_{NN} = 5.02 \text{ TeV}$

Stages of the relativistic heavy-ion collision

Bjorken 1983

Chemical and thermal freeze-out

Hadronization (T \sim T_c)

Quark-Gluon Plasma (thermalized matter)

Pre-equilibrium, fast thermalization ~ 1 fm/c, glasma?

Hard collisions

Lorentz-contracted ions (dense gluonic matter, Color Glass Condensate?)

- All stages in models of nuclear collisions
- QGP expansion modeled by relativistic hydrodynamics

Models are crucial to characterize matter produced in heavy-ion collisions!

Outline

Recent results from ALICE

- Light-flavor hadrons production
 - Collective effects on p_{T} spectra
 - Thermal production
 - Strangeness and resonances
- Heavy-flavor hadron and quarkonia production
 - D meson and Λ_c baryon production
 - Quarkonia sequential suppression and regeneration
 - J/ψ photoproduction

Charged π , K and p spectra

- Measured and identified with different analysis techniques: ITS, TPC, TOF, HMPID and topological identification of decaying charged kaons
- Mass dependent hardening of the spectra with increasing centrality
- → Suggests common radial expansion

p / π ratio in Pb-Pb and Xe-Xe

- Maximum in the p/π ratio due to radial flow
- Similar values for Pb-Pb and Xe-Xe at similar multiplicity

Blast-Wave model fit to hadron spectra

$$E\frac{d^{3}N}{dp^{3}} \propto \int_{0}^{R} m_{T} I_{0} \left(\frac{p_{T}\sinh(\rho)}{T_{Kin}}\right) K_{1} \left(\frac{m_{T}\cosh(\rho)}{T_{Kin}}\right) r dr$$
$$m_{T} = \sqrt{m^{2} + n^{2}} \qquad 0 = \tanh^{-1}(\beta_{T}) \qquad \beta_{T} = \beta_{T} \left(\frac{r}{T_{Kin}}\right)^{n}$$

Schnedermann, Sollfrank and Heinz Phys. Rev. C 48, 2462 Simplified hydrodynamic model with 3 parameters:

- β_T radial expansion velocity
- T_{kin} kinetic freeze-out temperature
- *n* velocity profile
- → Blast-Wave fit parameters are consistent for Pb-Pb and Xe-Xe at similar multiplicity

Simultaneous fit to the π , K, p spectra

p–Pb Phys. Lett. B 760 (2016) 720 Pb–Pb 2.76 TeV, Phys. Rev. C88 (2013) 044910

Blast-Wave model fit to hadron spectra

Schnedermann, Sollfrank and Heinz Phys. Rev. C 48, 2462 Simplified hydrodynamic model with 3 parameters:

- β_T radial expansion velocity
- T_{kin} kinetic freeze-out temperature
- *n* velocity profile
- → Blast-Wave fit parameters are consistent for Pb-Pb and Xe-Xe at similar multiplicity
- → Similar trend observed in pp and p-Pb collisions
- → Larger β_T in small systems at similar multiplicity

p–Pb Phys. Lett. B 760 (2016) 720 Pb–Pb 2.76 TeV, Phys. Rev. C88 (2013) 044910

Comparison to hydro models – Pb-Pb (0-5%)

- iEBE-VISHNU (hydro+UrQMD) + TRENTo/AMPT initial conditions [1]
- McGill: MUSIC (hydro) + IP glasma initial conditions [2]
- EPOS LHC: hydro param. + hadronzation [3]
- Models description within 20-40% for Pb-Pb central collisions
- Presented models give much worse description in peripheral collisions

radial flow (hydro) - Navier-Stokes equations [1] Eur. Phys. J C77 (2017) 645 [2] Phys. Rev. C95 (2017) 064913 [3] Phys. Rev. C92 (2015) 034906

Thermal models vs particle yields in Pb-Pb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Nucl. Phys. A 971 (2018) 1

THERMUS: Wheaton et al., Comput. Phys. Commun, 180 (2009) 84 GSI-Heidelberg: Andronic et al., Phys. Lett. B 673 142 SHARE: Petran et al., Comp. Phys. Commun. 195 (2014) 2056 Hadron production in chemical equilibrium

Production of (most) hadrons well described at freeze-out temperature T_{ch}^{\sim} 155 MeV

Tension for protons and multistrange baryons: incomplete hadron spectrum, baryon annihilation in hadronic phase, interacting hadron gas, ...?

K^{*0} resonance production overestimated by thermal models (rescattering in the hadronic phase?)

Thermal models vs particle yields in Pb-Pb at √s_{NN} = 5.02 TeV

Production of (most) hadrons well described at freeze-out temperature $T_{ch} \sim 152 \text{ MeV}$ (lower than at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$)

Tension for protons and multistrange baryons confirmed at higher energy

K^{*0} resonance production overestimated by thermal models confirmed at higher energy

THERMUS: Wheaton et al., Comput. Phys. Commun, 180 (2009) 84 GSI-Heidelberg: Andronic et al., Phys. Lett. B 673 142 SHARE: Petran et al., Comp. Phys. Commun. 195 (2014) 2056

Ratios of p_T integrated yields in pp, p-Pb, Xe-Xe and Pb-Pb

- No significant energy dependence is observed
- K/ π and p/ π are consistent for all collision systems at similar multiplicity
- ightarrow relative particle yields are driven by energy density?

Relative strangeness production in pp, p-Pb and Pb-Pb

Historically a signature of the QGP Rafelski & Mueller, PRL 48 (1982) 1066

- Smooth evolution from pp to Pb-Pb
- Enhancement observed in A-A which increases with strangeness content
- Enhancement also seen in the smaller systems pp and p-Pb
- No significant energy and system dependence is observed at similar multiplicity
- DIPSY model (rope hadronization) describes data best

PYTHIA 8: Comput. Phys. Commun. 178 (2008) 852867 EPOS LHC: PRC92 (2015) 034906 DIPSY: PRD92(2015) 094010

Relative strangeness production in pp, p-Pb, Xe-Xe and Pb-Pb

pp 7 TeV, p-Pb 5.02 TeV ALICE, Nature Physics 13 (2017) 535 Historically a signature of the QGP Rafelski & Mueller, PRL 48 (1982) 1066

- Smooth evolution from pp to Pb-Pb
- Enhancement observed in A-A which increases with strangeness content
- Enhancement also seen in the smaller systems pp and p-Pb
- Xe-Xe results in agreement with previous measurements
- No significant energy and system dependence is observed at similar multiplicity
- → strangeness production is driven by the characteristic of final state

Resonance production

Resonance	ρ ⁰	K*0	Λ(1520)	Φ
Lifetime (fm/c)	1.3	4.16	12.6	46.2

Rescattering and regeneration in the hadronic phase influence on the measured resonance yields

Final yields at kinetic freeze-out depend on:

- Initial yield after chemical freezeout
- Lifetime of hadronic phase
- Resonance lifetime
- Scattering cross-section of decay products

Relative resonance production in pp, p-Pb, Xe-Xe and Pb-Pb collisions

arXiv:1805.04361

Phys. Rev. C 95, 064606 (2017)

- Suppression of short-lived resonances (ρ⁰, K^{*0}, Λ(1520)) production with collision centrality is observed
- Φ/K is independent of collision centrality
- Similar trend seen in all collision systems
- Thermal models overestimate production in central collisions
- EPOS3 describes Φ/K⁻ and trend of K^{*0}/K⁻, ρ⁰/π (with UrQMD included)
- → Dominance of rescattering over regeneration in hadronic phase

MESON 2018, Jacek Otwinowski

Heavy-flavor hadron and quarkonia production

- For p_T > 10 GeV/c: the same suppression of light-flavor and D mesons in Pb-Pb collisions → similar energy loss of heavy and light partons in the QGP?
- For p_T < 10 GeV/c: smaller suppression of D mesons than light-flavor hadrons (difficult to interpret due to other effects e.g. radial flow, recombination,...)

Strange and non-strange D meson production in Pb-Pb at $Vs_{NN} = 5.02 \text{ TeV}$

arXiv:1804.09083

- R_{AA}: hint of enhanced D_s meson production compared to non-strange mesons
- Transport models (TAMU PRC93 (2016) 034906, PHSD PLB735 (2014)445) predict enhancement but fail to describe data at high p_{T} (TAMU contains only elastic parton energy loss)
- D_{s}^{+}/D^{0} shows no dependence on centrality
- Well described by model (Catania EPJC78 (2018) 348) with only coalescence included 9-Jun-2018 MESON 2018, Jacek Otwinowski

Λ^+_{c} production in pp and p-Pb

- Λ_{c}^{+}/D^{0} ratio larger than expected from measurements at $e^{+}e^{-}$ and ep colliders
- Λ^+_c/D^0 show similar values in pp and p-Pb and is similar to Λ/K^0_s
- Λ^+_c/D^0 ratio in pp and p-Pb are not described by models

PYTHIA8: JHEP 08 (2015) 003 DIPSY: Phys. Rev. D92 (2015) 094010 HERWIG: Eur. Phys. J. C58 (2008) 639 Shao et al. Eur. Phys. J. C77 (2017) 1

9-Jun-2018

Λ^+_{c} production in pp, p-Pb and Pb-Pb

- Λ^+_c/D^0 in Pb-Pb is ~1 at high p_T and is higher than in pp and p-Pb
- R_{AA} : Enhanced Λ_{c}^{+} production compared to D mesons

Charm: constraining the QGP transport properties

- Further constraints on the QGP transport properties from charm flow measurements
- Same approach for high-p_T light-flavor hadrons [Phys. Rev. <u>C90(2014) 014909</u>]

R_{AA} of J/ Ψ at LHC vs RHIC

Sequential suppression vs regeneration

PLB 743 (2014) 314

- Different suppression vs centrality compared to RHIC at central and forward rapidity \rightarrow Different source of J/ ψ in central collisions at the LHC
- \rightarrow Indication of regeneration in central collisions

PHENIX, PRC 84 (2011) 054912

R_{AA} of J/ Ψ in Pb-Pb vs models

Phys. Lett. B 766 (2017) 212

- Transport models (TM1, TM2): continuous interplay between dissociation and (re)generation
- Statistical harmonization model: all J/ ψ are dissociated in the plasma (re)generation occurs at the phase boundary
- Comover model: J/ψ are suppressed via interaction with a parton co-moving medium; (Re)generation added as a gain term.
- \rightarrow Measurement is precise enough to constrain the models

9-Jun-2018

R_{AA} of J/ Ψ in Xe-Xe and Pb-Pb

Xe-Xe, arXiv:1805.04383

- R_{AA} in Xe-Xe confirms strong (re)generation at the LHC
- Transport model (TM1) predicts smaller R_{AA} in Xe-Xe compared to Pb-Pb

Excess in J/ ψ R_{AA} at low p_T

PRL 116 (2016) 222301

 $R_{AA} \sim 7$ at low p_T in peripheral collisions \rightarrow related to J/ ψ photoproduction?

R_{AA} of Y(1s) in Pb-Pb

arXiv:1805.04387

- Strong suppression of Y(1s) in Pb-Pb at forward rapidity
- Transport model (TM1) with regeneration describe Y(1s) production
- For integrated yields $R_{AA}^{Y(2s)} / R_{AA}^{Y(1s)} \sim 0.28 \rightarrow indication of sequential suppression$

Exclusive J/ ψ photoproduction in ALICE

Ultra-peripheral collisions (UPC): impact parameter $b > R_1 + R_2$

 $J/\psi \rightarrow e^+e^- \text{ or } \mu^+\mu^-$ (measurement in different rapidity intervals)

central

Exclusive J/Ψ photoproduction in p-Pb and Pb-p

$\sigma(W_{yp}) \sim square of the gluon PDF in the proton$

ZEUS: Eur. Phys. J. C 24, 345 (2002)H1: Eur. Phys. J. C 46, 585 (2006),Eur. Phys. J. C 73, 2466 (2013)

- ALICE forward (published)
- ALICE semi-forward and central (preliminary)
- Power low fit: exponent = 0.70 ± 0.05
- Good agreement with HERA data (H1 and ZEUS)
- Large energy reach ~700 GeV
- Bjorken-x ~2×10⁻⁵

 \bullet

- → New constraints on the gluon PDF in the proton
- → No sign of gluon saturation at this energy range

Exclusive J/ ψ photoproduction vs models

ightarrow All models are consistent with data

LHCb data pp at **Vs_{NN} =** 13 TeV LHCb-CONF-2016-007

Models: CCT - energy dependent hot spot model [PLB766 (2017) 186]

JMTR NLO - DGLAP formalism at NLO [EPJC76 (2016) 633]

STARLIGHT parametrization of HERA data [CPhC 2012 (2017) 258]

NLO BFKL - proton impact factor from F2 HERA data [PRD94 (2016) 054002]

CGC – color glass condensate with gluon saturation [PRD90 (2014) 054003]

Low-p_T excess in the J/ ψ yield in Pb-Pb at $v_{NN} = 2.76$ and 5.02 TeV

PRL 116 (2016) 222301

- GBW 2017: γ flux with nuclear overlap
- GBW 2018: γ flux corrected
- CGC: color glass condensate
- GC-hs, GS-hs: energy-dependent hot spot models
- → Excess should be taken into account for $J/\psi R_{AA}$ at low p_T

Summary and Outlook

- Strong collectivity in Pb-Pb as well as in pp and p-Pb collisions
- Relative hadron production independent of collision energy and system for the same multiplicity events
- Strangeness enhancement increasing with multiplicity and strangeness content
- Rescattering of short-lived resonances in the hadronic phase
- Hint of enhanced D_s/D in Pb-Pb (no centrality dependence)
- Enhanced Λ^+_{c}/D^0 in Pb-Pb
- Similar suppression of D mesons and light-flavor hadrons a high $\ensuremath{p_{\text{T}}}$
- J/ψ and Y sequential suppression and regeneration observed
- J/ ψ photoproduction puts new constraints on the gluon PDF in proton
- Low- $p_T J/\psi$ enhancement (R_{AA}) due to J/ψ photoproduction

Backup

Baryon to meson ratios in pp and p-Pb

Nature Physics: 10.1038/nphys4111

- Baryon to meson ratios do not change significantly with multiplicity
- DIPSY model describes data best

Charged-particle R_{AA} at Vs_{NN} = 2.76 and 5.02 TeV

arXiv:1802.09145

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T} = \frac{[medium]}{[vacuum]}$$

 $\rm N_{coll}$ from Glauber MC

- Different suppression pattern depending on Pb-Pb collision centrality
- Maximum suppression by a factor ~7 ($6 < p_T < 7 \text{ GeV}/c$) in 0-5% collisions
- No significant evolution with collision energy is seen
- → Indication of larger parton energy loss at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Confirmed by jet measurements: ATLAS, PRL 114 (2015) 072302

R_{pPb} and R_{PbPb} at the LHC

ALICE, Eur.Phys. .J. C74 (2014) 9

For $p_T > 8 \text{ GeV/c}$

- Strong suppression in central Pb-Pb collisions (ALICE and CMS data)
- No modification for colorless probes (CMS)
- No modification in p-Pb collisions (ALICE, no centrality selection)
 - → Suppression in Pb-Pb collisions is due to final state effects!

Confirmed by jet measurements: Phys. Lett. B749 (2015) 68

Charged-particle R_{pPb} and R_{PbPb} at the LHC

arXiv:1802.09145

For $p_T > 8 \text{ GeV/c}$

- Strong suppression in central Pb-Pb collisions
- Small suppression in peripheral Pb-Pb collisions (possible due to biased centrality selection)
- No modification in p-Pb collisions (no centrality selection)
 - → Suppression in central Pb-Pb collisions is due to final state effects!

Confirmed by jet measurements: Phys. Lett. B749 (2015) 68

Charged-particle R_{AA} in Xe-Xe and Pb-Pb

arXiv:1805.04399

Similar R_{AA} in central Xe-Xe and Pb-Pb collisions at similar multiplicity

→ Result of interplay of geometry and path length dependence of parton energy loss

R_{AA} of π, K, p at $\sqrt{s_{NN}}$ = 5.02 TeV

pp Phys. Lett. B 760 (2016) 720

- In Pb–Pb collisions all three species are equally suppressed for all centralities at high $p_{\rm T}$ > 8 GeV/c
- Similar suppression as observed at v_{NN} = 2.76 TeV [Phys. Rev. C93 (2016) 034913]
- \rightarrow Fragmentation function at high p_T is not affected by the medium

R_{AA} energy dependence

No significant evolution with collision energy is found

ALICE

R_{AA} energy dependence

No significant evolution with collision energy is found

ALICE

R_{AA} energy dependence

No significant evolution with collision energy is found

- The same suppression of light-flavor and D mesons in central Pb-Pb collisions
- Stronger suppression of D than B mesons at high- \mathbf{p}_{T}
- \rightarrow Parton energy loss in the QGP:
- $\Delta E_{g,q} \sim \Delta E_c$ at high p_T
- $\Delta E_b < \Delta E_c$? Jet measurements show $\Delta E_{g,q} \sim \Delta E_b$?

Jets: CMS, PRL 113, 132301 (2014) ATLAS, PRL 114 (2015) 072302

Non-prompt J/ψ (B->J/ψ + X): ALICE, JHEP 1507 (2015) 051 CMS, JHEP 05 (2012) 063

MESON 2018, Jacek Otwinowski

R_{AA} of identified hadrons comparison at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

K / π ratio in Pb-Pb

- Different pattern in the K/ π ratio depending on centrality
- No significant change between the two energies $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV

p / π ratio in Pb-Pb

- Maximum in the p/π ratio due to radial flow
- Shift of the maximum of p/π to higher p_T with respect to lower energies due to stronger radial flow

Flow vs recombination at intermediate p

Baryon-to-meson ratios at intermediate p_T are sensitive to both effects: flow and recombination

The same ratios observed in Pb-Pb and Xe-Xe at similar multiplicity

 p/ϕ ratio is consistent with hydro predictions (particles with similar mass) but also with recombination [Greco et al., Phys. Rev. C92 (2015) 054904]

→ Still open question whether flow or recombination determines particle production at intermediate $p_{\rm T}$

Parton energy loss and and jet quenching

 Hard probes are produced in the early stage of collision (τ~1/Q) and can be used to probe dense and hot QCD matter

- Parton energy loss is expected to depend on its color charge and mass [Dokshitzer & Kharzeev, PLB 519 (2001) 199, Djordjevic & Gyulassy, NPA 733 (2004) 265]
 - $\Delta E_{g} > \Delta E_{q} > \Delta E_{c} > \Delta E_{b}$
- Characterize medium transport properties via parton energy loss
 - Modification of leading hadron and jet spectra is quantified by nuclear modification factors R_{AA}

Quarkonia sequential suppression vs (re)generation

- Quarkonia bound states of charm and bottom quarks produced in early stage of collision
- Quarkonia sequential suppression in the QGP due to color screening Matsui and Satz, PLB 168 (1986) 415; Karsch and Satz, ZPC 51, (1991) 209
- Quarkonia (re)generation at the phase boundary T ~ T_{ch} Braun-Munzinger and Stachel, PLB 490 (2000) 196; Thews et al., PRC 63 (2000) 054905

At LHC one can expect enhanced quarkonium production via (re)generation → Evidence for heavy quark thermalization in the QGP

Heavy-flavor R_{pPb} and R_{AA} at $Vs_{NN} = 5.02 \text{ TeV}$

- $R_{pPb} \sim 1$: no modification of heavy-flavor production in p-Pb compared to scaled pp
- Strong suppression in Pb-Pb collisions (final state effect)
- R_{AA} ordering supports recombination of Ds from s+c quarks
- R_{AA} at high p_T is similar for D mesons and light-flavor hadrons