Central Exclusive Production (CEP) at LHCb

Meson 2018 12 June 2018, Krakow.

1. Central Exclusive Physics (CEP)

- 2. LHCb and HeRSCheL Detector
- 3. Analyses:
 - pp at 13 TeV
 - PbPb at $\sqrt{s_{NN}} = 5 \text{ TeV}$
 - pPb and Pb-p at 8 TeV

4. Physics reach for CEP

It's QCD – but not as we normally see it. It's colour-free

It's QCD – but not as we normally see it. It's colour-free

Elastic diffractive: clean environment to study vacuum, and to produce mesons.

Central Exclusive Production (CEP)

• exotics (tetraquarks, glueballs, hybrids)

Experimentally: Reconstruct central system and identify rapidity gaps

1. Central Exclusive Physics

2. LHCb and HeRSCheL Detector

3. Analyses:

- pp at 13 TeV
- pPb and Pb-p at 8 TeV
- PbPb at $\sqrt{s_{NN}} = 5 \text{ TeV}$

4. Physics reach for CEP

The LHCb detector

Int. J. Mod. Phys. A 30 (2015) 1530022

High Rapidity Shower Counters at LHCb(HeRSCheL)JINST 13 (2018) P04017

Scintillators, light-guides and PMTs

Backward stations

Installation finished in 2014

-114 m -19.7 m -7.5 m

JINST 13 (2018) P04017

Showers induced by high-rapidity particles interacting with machine elements Ideally wish to veto on any activity: threshold depends on signal and noise.

Sample 1: Response to CEP events (QED µµ)

Sample 1: Response to CEP events

Sample 2: Non-CEP events (J/ψ dissociation)

HeRSCheL discriminant for physics signals

1. Central Exclusive Physics

2. LHCb and HeRSCheL Detector

- 3. Analyses:
 - pp at 13 TeV
 - PbPb at $\sqrt{s_{NN}} = 5 \text{ TeV}$
 - pPb and Pb-p at 8 TeV

4. Physics reach for CEP

pp / p-Pb / Pb-p / PbPb data-taking

Vector meson production in pp collisions

	Data-taking year	Energy	Integrated Luminosity	Paper	
J/ψ ພ(2S)	2010	7 TeV	37 pb ⁻¹	JPG 40 (2013) 045001	
Ψ(=0)	2011	7 TeV	930 pb ⁻¹	JPG 41 (2014) 055002	
NEW	2015	13 TeV	204 pb ⁻¹	arXiv:1806.04079	
Ŷ	2011	7 TeV	945 pb⁻¹	JHEP 09 (2015) 084	
	2012	8 TeV	1985 pb ⁻¹		
J/ψ+J/ψ	2011	7 TeV	945 pb ⁻¹	JPG 41 (2014) 115002	
J/ψ+ψ(2S)	2012	8 TeV	1985 pb ⁻¹		

R. McNulty, CEP at LHCb

Cross-section measurement J/ ψ / ψ (2S)

Sample: events with two muons and no other charged or neutral activity.

Inelastic background

Inelastic background J/ψ

Regge theory:

$$\frac{d\sigma}{dt} \sim e^{bt}$$

b-slope of signal is same with/without HeRSCheL *b*-slope of bkg changes (because you veto higher- p_{τ} events)

New Technique:

$$N_{HRC} = \varepsilon N_{sig} + \beta(p_T) N_{bkg}$$

 $N_{anti-HRC} = [1-\varepsilon] N_{sig} + [1-\beta(p_T)] N_{bkg}$
 ε known from QED sample
Pure bkg sample obtained

Subtract bkg from total => Signal derived

Cross-section measured in LHCb acceptance

$$\begin{array}{rcl} \sigma_{J/\psi \to \mu^+ \mu^-}(2 < \eta < 4.5) &=& 399 \pm 16 \pm 10 \pm 16 \ \mathrm{pb}, \\ \sigma_{\psi(2S) \to \mu^+ \mu^-}(2 < \eta < 4.5) &=& 10.2 \pm 1.0 \pm 0.3 \pm 0.4 \ \mathrm{pb}. \end{array}$$

Systematic uncertainties factor two smaller than previous analysis

Source	$J\!/\psi$ analysis (%)	$\psi(2S)$ analysis (%)
HERSCHEL veto	1.7	1.7
2 VELO track	0.2	0.2
0 photon veto	0.2	0.2
Mass window	0.6	0.6
p_T^2 veto	0.3	0.3
Proton dissociation	0.7	0.7
Feed-down	0.7	-
Nonresonant	0.1	1.5
Tracking efficiency	0.7	0.7
Muon ID efficiency	0.4	0.4
Trigger efficiency	0.2	0.2
Total excluding luminosity	2.5	2.7
Luminosity	3.9	3.9

Differential cross-sections J/ψ and ψ(2S)

S. Jones, A. Martin, M. Ryskin, and T. Teubner, Probes of the small x gluon via exclusive J/ψ and Υ production at HERA and the LHC, JHEP **1311** (2013) 085, arXiv:1307.7099.

S. P. Jones, A. D. Martin, M. G. Ryskin, and T. Teubner, *Predictions of exclusive* $\psi(2S)$ production at the LHC, J. Phys. **G41** (2014) 055009, arXiv:1312.6795.

HERA measured power-law: $\sigma_{\gamma p \to J/\psi p}(W) = 81(W/90 \,\text{GeV})^{0.67} \,\text{nb}$ Use this for W- solution (in previously measured region). LHCb measures W+

Pb-Pb collisions

Dipions in pA/Ap

- pp->p(ππ)p has contributions
 from double-Pomeron-exchange (f0, f2 etc) & photoproduction (ρ).
- Difficult to disentangle (e.g. f0 appearing as shoulder on ρ)
- Difficult to separate exclusive from dissociation
- pA->p(ππ)A has enhanced photoproduction
- Remarkably clean resonance
- x down to 10⁻⁶, W up to 1 TeV

1. Central Exclusive Physics

2. LHCb and Herschel Detector

3. Analyses:

- pp at 13 TeV
- PbPb at $\sqrt{s_{NN}} = 5 \text{ TeV}$
- pPb and Pb-p at 8 TeV

4. Physics reach for CEP

$d\sigma^{ m corr}/dy$	$J_{/}$	$/\psi$	Ϋ́		
	odderon	photon	odderon	photon	
Tevatron	0.3–1.3–5 nb	0.8–5–9 nb	0.7 - 4 - 15 pb	0.8–5–9 pb	
LHC	0.3–0.9–4 nb	2.4 15 27 nb	1.7-5-21 pb	5-31-55 pb	

Odderon-Pomeron Interference

Exotics: Glueballs, Hybrids, Tetraquarks etc.

e.g. Select 4-muon exclusive events

Selection requirement:

Require precisely 4 tracks, at least three identified as muons

Double J/ψ production

LHCb estimates exclusive cross-section. **24+-9 pb**

Harland-Lang, Khoze, Ryskin: JPG 42 (2015) 5,055001 **2-7 pb**

<u>Summary</u>

- Several CEP pp measurements at 7, 8 and (new) 13 TeV using muons.
- New Herschel detector extends detection of rapidity gap and reduces experimental uncertainty.
- Measurements underway in proton-lead and lead-lead collisions
- Excellent laboratory for producing mesons cleanly: large physics reach.

VELO sub-detector

Use of backwards tracks

Use of backwards tracks

Collisions

+ 2017 Xe-Xe run @ 5.4 TeV (~0.4ub⁻¹)

Туре		√s		Lumi (µb ⁻¹)	
p-Ne		86.6 GeV			
Pb-Ne		54.5 GeV		0.05	
p-Ne		110 GeV		0.5	
p-He 110 GeV			0.5		
p-Ar	p-Ar 110 GeV			~3	
p-Ar 6		8.6 GeV		~0.05	
Pb-Ar 6		68.6 GeV	'	~0.05	
p-He	110 GeV			1.7	
p-He	86.6 GeV			~17	
p-He	1	110 GeV		0.07	
p-Ne	1	110 GeV		~1.0	
p-Ne	6	68.6 GeV		~200	
(indicative luminosities)					

Candidate for χ_c decay to J/ ψ + γ

Selected $\chi_{c0,1,2}$ candidates

