The meson production reactions: the analysis methods and recent results

Andrey Sarantsev

Petersburg Nuclear Physics Institute

HISKP Uni-Bonn (Germany) PNPI (Russia)

15th International Workshop on Meson Physics KRAKÓW, POLAND, 7th - 12th June 2018

1

0.0.1 Baryons on the lattice

- a Lattice and quark models predict more states than observed (missing resonances)
 - **b** Lattice and quark models predict even-odd staggering (exp: parity doublets)
 - c $3/2^+$: 5 states expected, $N(1720)3/2^+$, $N(1900)3/2^+$, tentative $N(1960)3/2^+$, $N(2200)3/2^+$

Baryon sector: the partial wave analysis groups

- SAID (GWU,USA): Analysis of elastic πN data in energy independent method and then in the K-matrix approach. Fit of the $\gamma n \to \pi N, \eta N$ data as a sum of BW amplitudes and now also in the framework of K-matrix/P-vector approach. Recently: analysis of the final states with 2 pions and $\bar{K}N$ collision reactions.
- MAID (Mainz): Energy dependent analysis of photoproduction data on γN to πN , ηp , $\eta' p$, $K\Lambda$, $K\Sigma$. Parameterization of partial waves as a sum of Breit-Wigner amplitudes with unitarisation procedure. Development of the approach which takes into account crossing symmetry and dispersion corrections.
- Bonn-Gatchina: Energy dependent analysis of pion induced (inelastic) and almost all photoproduction data. K-matrix/P-vector and now N/D-dispersion approach. Minimization: χ^2 for 2 body final state and maximum likelihood for multi-body final states. Recently, the analysis of the $\bar{K}N$ collision reactions.
- Juelich group: Energy dependent covariant approach. Pion induced data (elastic and inelastic), $\gamma p \rightarrow \pi N, \eta N, K\Lambda, K\Sigma$. Unitarity, analyticity and chiral constraints. Solution of the Bethe-Salpeter equation.

- ANL-OSAKA Energy dependent covariant approach. Pion induced data (elastic and inelastic), $\gamma p \rightarrow \pi N$, ηN (all data) and $\gamma p \rightarrow K\Lambda$, $K\Sigma$. Unitarity and analyticity constraints. Solution of the Bethe-Salpeter equation. Analysis of the KN collision data with one meson in the final state.
- M. Manley (Kent Uni) Energy dependent covariant approach. Pion induced data (elastic and inelastic including 2pion production), $\gamma p \to \pi N$ (all data) and $\gamma p \to K\Lambda, K\Sigma$. Unitarity and analyticity constraints.

Bonn-Gatchina partial wave analysis group:

A. Anisovich, E. Klempt, V. Nikonov, A. Sarantsev, U. Thoma.

http://pwa.hiskp.uni-bonn.de/

Responsible: Dr. V. Nikonov, E-mail: <u>nikonov@hiskp.uni-bonn.de</u> Last changes: January 26th, 2010.

Energy dependent approach

In many cases an unambiguous partial wave decomposition at fixed energies is impossible. Then the energy and angular parts should be analyzed together:

$$A(s,t) = \sum_{\beta\beta'n} A_n^{\beta\beta'}(s) Q_{\mu_1...\mu_n}^{(\beta)+} F_{\nu_1...\nu_n}^{\mu_1...\mu_n} Q_{\nu_1...\nu_n}^{(\beta')}$$

1. A. V. Anisovich, V. V. Anisovich, V. N. Markov, M. A. Matveev and A. V. Sarantsev, J. Phys. G 28, 15 (2002)

- 2. A. Anisovich, E. Klempt, A. Sarantsev and U. Thoma, Eur. Phys. J. A 24, 111 (2005)
- 3. A. V. Anisovich and A. V. Sarantsev, Eur. Phys. J. A 30, 427 (2006)
- 4. A. V. Anisovich, V. V. Anisovich, E. Klempt, V. A. Nikonov and A. V. Sarantsev, Eur. Phys. J. A 34, 129 (2007).
- 1. Correlations between angular part and energy part are under control.
- 2. Unitarity and analyticity can be introduced from the beginning.
- 3. Parameters can be fixed from a combined fit of many reactions.
- 1. C. Zemach, Phys. Rev. 140, B97 (1965); 140, B109 (1965).
- 2. S.U.Chung, Phys. Rev. D 57, 431 (1998).
- 3. B. S. Zou and D. V. Bugg, Eur. Phys. J. A 16, 537 (2003)

Resonance amplitudes for meson photoproduction

General form of the angular dependent part of the amplitude:

$$\bar{u}(q_1)\tilde{N}_{\alpha_1\dots\alpha_n}(R_2 \to \mu N)F^{\alpha_1\dots\alpha_n}_{\beta_1\dots\beta_n}(q_1+q_2)\tilde{N}^{(j)\beta_1\dots\beta_n}_{\gamma_1\dots\gamma_m}(R_1 \to \mu R_2)$$
$$F^{\gamma_1\dots\gamma_m}_{\xi_1\dots\xi_m}(P)V^{(i)\mu}_{\xi_1\dots\xi_m}(R_1 \to \gamma N)u(k_1)\varepsilon_\mu$$

$$F^{\mu_1\dots\mu_L}_{\nu_1\dots\nu_L}(p) = (m+\hat{p})O^{\mu_1\dots\mu_L}_{\alpha_1\dots\alpha_L}\frac{L+1}{2L+1}\left(g^{\perp}_{\alpha_1\beta_1} - \frac{L}{L+1}\sigma_{\alpha_1\beta_1}\right)\prod_{i=2}^L g_{\alpha_i\beta_i}O^{\beta_1\dots\beta_L}_{\nu_1\dots\nu_L}$$
$$\sigma_{\alpha_i\alpha_j} = \frac{1}{2}(\gamma_{\alpha_i}\gamma_{\alpha_j} - \gamma_{\alpha_j}\gamma_{\alpha_i})$$

The amplitude for t-channel exchange:

$$A = g_1(t)g_2(t)R(\xi,\nu,t) = g_1(t)g_2(t)\frac{1+\xi exp(-i\pi\alpha(t))}{\sin(\pi\alpha(t))}\left(\frac{\nu}{\nu_0}\right)^{\alpha(t)} \qquad \nu = \frac{1}{2}(s-u).$$

Here $\alpha(t)$ is the reggion trajectory, and ξ is its signature:

$$R(+,\nu,t) = \frac{e^{-i\frac{\pi}{2}\alpha(t)}}{\sin(\frac{\pi}{2}\alpha(t))\Gamma\left(\frac{\alpha(t)}{2}\right)} \left(\frac{\nu}{\nu_0}\right)^{\alpha(t)},$$

$$R(-,\nu,t) = \frac{ie^{-i\frac{\pi}{2}\alpha(t)}}{\cos(\frac{\pi}{2}\alpha(t))\Gamma\left(\frac{\alpha(t)}{2} + \frac{1}{2}\right)} \left(\frac{\nu}{\nu_0}\right)^{\alpha(t)}$$

t,u-exchange subtraction procedure

t,u-exchange subtraction procedure

N/D based (D-matrix) analysis of the data

$$\frac{J}{M} = \frac{J}{M} + \frac{\delta_{JK}}{\pi \eta K} + \frac{\delta_{JK}}{m}$$

$$D_{jm} = D_{jk} \sum_{\alpha} B_{\alpha}^{km}(s) \frac{1}{M_m - s} + \frac{\delta_{jm}}{M_j^2 - s} \qquad \hat{D} = \hat{\kappa} (I - \hat{B}\hat{\kappa})^{-1}$$

$$\hat{\kappa} = diag\left(\frac{1}{M_1^2 - s}, \frac{1}{M_2^2 - s}, \dots, \frac{1}{M_N^2 - s}, R_1, R_2 \dots\right)$$

$$\hat{B}_{ij} = \sum_{\alpha} B_{\alpha}^{ij} = \sum_{\alpha} \int \frac{ds'}{\pi} \frac{g_{\alpha}^{(R)i} \rho_{\alpha}(s', m_{1\alpha}, m_{2\alpha}) g_{\alpha}^{(L)j}}{s' - s - i0}$$

Pole parameters of the S_{11} states

	$N(1535)S_{11}$		$N(1650)S_{11}$		$N(1890)S_{11}$	
	K-matrix	D-matrix	K-matrix	D-matrix	K-matrix	D-matrix
$M_{ m pole}$	1501±4	1494	1647±6	1651	1900±15	1905
$\Gamma_{ m pole}$	134 ± 11	116	103±8	95	90^{+30}_{-15}	106
Elastic residue	31±4	25	24±3	23	1±1	1.5
Phase	-(29 \pm 5) $^{\circ}$	-38 °	-(75 \pm 12) $^{\circ}$	-62 $^{\circ}$	-	-
$Res_{\pi N o N \eta}$	28 ±3	25	15±3	15	4±2	5
Phase	-(76 \pm 8) $^{\circ}$	-69 [°]	(132 \pm 10) $^{\circ}$	140	(40 \pm 20) $^{\circ}$	42 °
$Res_{\pi N \to \Delta \pi}$	7±4	4	11±3	12	-	-
Phase	(147 \pm 17) $^{\circ}$	157°	-(30 \pm 20) $^{\circ}$	-40	-	-
$A^{1/2}$ (GeV $^{-rac{1}{2}}$)	0.116±0.010	0.107	0.033±0.007	0.029	0.012±0.006	0.010
Phase	(7 \pm 6) $^{\circ}$	1 °	-(9 \pm 15) $^{\circ}$	0 °	120 \pm 50 $^{\circ}$	150°

Minimization methods

1. The two body final states $\pi N \to \pi N$, $\pi \pi \to \pi \pi$, $\gamma p \to \pi N$, $p\bar{p}(at\,rest) \to 3\pi$: χ^2 method. For n measured bins we minimize

$$\chi^2 = \sum_{j}^{n} \frac{\left(\sigma_j(PWA) - \sigma_j(exp)\right)^2}{\left(\Delta\sigma_j(exp)\right)^2}$$

2. Reactions with three or more final states are analyzed with logarithm likelihood method. The minimization function:

$$f = -\sum_{j}^{N(data)} ln \frac{\sigma_j(PWA)}{\sum_{m}^{N(rec MC)} \sigma_m(PWA)}$$

This method allows us to take into account all correlations in many dimensional phase space.

Recently included data

DATA	2011-2016	added in 2016-2018
$\gamma n \to \Lambda K, \Sigma^- K$		$rac{d\sigma}{d\Omega}$ (CLAS), E (CLAS)
$\gamma n ightarrow \pi^- p$	$rac{d\sigma}{d\Omega}, \Sigma, P$	E (CLAS)
$\gamma n ightarrow \eta n$	$rac{d\sigma}{d\Omega}, \Sigma$	$rac{d\sigma}{d\Omega}$ (MAMI) $rac{d\sigma}{d\Omega}(h=rac{1}{2})$ (CB-ELSA)
$\gamma p ightarrow \eta p$	$\frac{d\sigma}{d\Omega}, \Sigma(GRAAL)$	$rac{d\sigma}{d\Omega}, F, T$ (MAMI) T, P, H, G ,(CB-ELSA)
		E,Σ (CB-ELSA,CLAS)
$\gamma p ightarrow \eta' p$		$rac{d\sigma}{d\Omega}, \Sigma$
$\gamma p \to K^+ \Lambda$	$\frac{d\sigma}{d\Omega}, \Sigma, P, T, C_x, C_z, O_{x'}, O_{z'}$	Σ, P, T, O_x, O_z (CLAS)
$\gamma p \to K^+ \Sigma^0$	$rac{d\sigma}{d\Omega}, \Sigma, P, C_x, C_z$	Σ, P, T, O_x, O_z (CLAS)
$\pi^- p \to \pi^+ \pi^- n$		$d\sigma/d\Omega$ (HADES)
$\pi^- p o \pi^- \pi^0 p$		$d\sigma/d\Omega$ (HADES)
$\gamma p ightarrow \pi^0 \pi^0 p$	$d\sigma/d\Omega, \Sigma, E, I_c, I_s$	T,P,H,F,P_x,P_y (CB-ELSA)
$\gamma p \to \pi^+ \pi^- p$		$d\sigma/d\Omega, I_c, I_s$ (CLAS)
$\gamma p \rightarrow \omega p$	$d\sigma/d\Omega, \Sigma, ho_{ij}^k, E, G$ (CB-ELSA)	Σ (CLAS) P,T,F,H (CLAS)
$\gamma p \to K^* \Lambda$		$d\sigma/d\Omega$, $ ho_{ij}$

Energy independent analysis of the $\gamma p \to K \Lambda$ reaction Bonn-Gatchina-Tusla-Zagreb analysis

The resonance parameters from the Bonn-Gatchina solution and from the analysis of the energy-independent data

	$J^P = 1/2^-$		$J^P =$	$1/2^{+}$	$J^P = 3/2^+$	
	BnGa	L+P	BnGa	L+P	BnGa	L+P
M_1	1658 ± 10	1660 ± 5	1690 ± 15	1697 ± 23	-	-
Γ_1	102 ± 8	59 ± 16	155 ± 25	84 ± 34	-	-
Res	0.26 ± 0.10	0.10 ± 0.10	0.16 ± 0.05	$0.12\substack{+0.24 \\ -0.12}$	-	-
Θ_1	$(110 \pm 20)^0$	$(95 \pm 33)^0$	$-(160 \pm 25)^0$	$-(119 \pm 83)^0$	-	-
M_2	1895 ± 15	1906 ± 17	1860 ± 40	1875 ± 11	1945 ± 35	1912 ± 30
Γ_2	132 ± 30	100 ± 10	230 ± 50	33 ± 9	235_{-30}^{+70}	166 ± 30
Res	0.09 ± 0.03	0.06 ± 0.02	0.05 ± 0.02	0.30 ± 0.10	0.03 ± 0.02	—
Θ_2	$(8 \pm 30)^0$	$(87 \pm 27)^0$	$(27 \pm 30)^0$	$(82 \pm 9)^0$	$(90 \pm 40)^0$	—

The analysis of the new $\gamma p \to \eta p$ data. New MAMI data: a strong cusp effect from the $\eta' p$ channel

The analysis of the new $\gamma p \to \eta p$ data. $d\sigma/d\Omega$ (MAMI)

The analysis of the new $\gamma p
ightarrow \eta p$ data. H, P, T (CB-ELSA)

The analysis of the new $\gamma p ightarrow \eta p$ data. T (CB-ELSA), (MAMI scale 1.4)

The analysis of the new $\gamma p \to \eta p$ data. E (CB-ELSA), F (MAMI) (scale 1.4)

The analysis of the new $\gamma p \to \eta p$ data. Σ (CB-ELSA and CLAS)

Resonance	branchings	to the	ηN	channel
-----------	------------	--------	----------	---------

Res.	BR	Res.	BR	Res.	BR
N(1535)	0.42±0.04	N(1650)	0.32±0.04	N(1895)	0.10±0.05
$1/2^{-}$	0.42±0.10	$1/2^{-}$	0.05 - 0.15	$1/2^{-}$	(0.21±0.06)
N(1710)	0.25±0.09	N(1880)	0.19±0.07	N(2100)	0.25±0.10
$1/2^+$	0.10 - 0.30	$1/2^{+}$	$(0.25^{+0.30}_{-0.20})$	$1/2^+$	0.61±0.61
N(1520)	< 0.001	N(1700)	0.01±0.01	N(1875)	0.02±0.01
$3/2^{-}$	0.0023±0.0004	$3/2^{-}$	0±0.01	$3/2^{-}$	0.012±0.018
N(1720)	0.03±0.02	N(1900)	0.03±0.01	N(2120)	\leq 0.01
$3/2^+$	0.021±0.014	$3/2^+$	\sim 0.12	$3/2^{-}$	-
N(1675)	0.005±0.005	N(2060)	0.04±0.01	N(2190)	0.025±0.005
$5/2^{-}$	0±0.007	$5/2^{-}$	0.04±0.02	$7/2^{-}$	0±0.01
N(1680)	0.002±0.001	N(2000)	0.002±0.001	N(1990)	\leq 0.01
$5/2^+$	0±0.007	$5/2^{+}$	0.002±0.002	$7/2^{+}$	-

The analysis of the $\gamma p \rightarrow \eta' p$ data.

Strong contribution from the $S_{11}(1895)$, $P_{13}(1900)$, $P_{11}(2100)$ and $D_{13}(2120)$ states.

	Bonn-Gatchina	MAID
Mass (MeV)	1895 ± 15	1896 ± 1
Width (MeV)	90^{+30}_{-15}	93 ± 13

The differential cross section from MAMI on $\gamma p ightarrow \eta' p$

The description of the data below W=1917 MeV and the prediction of other observables

The analysis of the $\gamma n \to K \Lambda$ data and the $\gamma n \to K^+ \Sigma^-$ data (Practically no free parameters)

Clear contributions from the $S_{11}(1895)$ and $P_{13}(1900)$ states.

Description of the differential cross section

New CLAS data on the helicity asymmetry $\gamma n \to K^+ \Sigma^-$

	$A_{1/2}$	Phase	$A_{3/2}$	Phase
$N(1535)1/2^{-}$	-88±4	5±4°		
$N(1650)1/2^{-}$	16±4	-28 \pm 10 $^{\circ}$		
$N(1895)1/2^{-}$	-15±10	$60{\pm}25^{\circ}$		
$N(1440)1/2^+$	41±5	$23\pm10^{\circ}$		
$N(1710)1/2^+$	29±7	$80{\pm}20^{\circ}$		
$N(1880)1/2^+$	72±24	-30 \pm 30 $^\circ$		
$N(2100)1/2^+$	29±9	$35{\pm}20^{\circ}$		
$N(1520)3/2^{-}$	-45±5	-5 \pm 4 $^{\circ}$	-119±5	$5\pm4^{\circ}$
$N(1875)3/2^{-}$	4±3	-85 \pm 35 $^{\circ}$	-6±4	-85±45°
$N(2120)3/2^{-}$	80±30	15 \pm 25 $^{\circ}$	-33±20	-60 \pm 35 $^\circ$
$N(1720)3/2^+$	$-(25^{+40}_{-15})$	-75 \pm 35 $^\circ$	100±35	-80 \pm 35 $^{\circ}$
$N(1900)3/2^+$	-98±20	-13 \pm 20 $^{\circ}$	74±15	$5\pm15^{\circ}$
$N(1975)3/2^+$	-26±13	$8\pm25^{\circ}$	-77±15	$5\pm20^{\circ}$
$N(1675)5/2^{-}$	-53±4	-3±5°	-73±5	-12±5°
$N(2060)5/2^{-}$	52±25	-5 \pm 20 $^{\circ}$	12±7	-40 \pm 35 $^{\circ}$
$N(1680)5/2^+$	32±3	-7±5°	-63±4	-10 \pm 5 $^{\circ}$
$N(2000)5/2^+$	19±10	-80 \pm 40 $^{\circ}$	11±5	$82{\pm}30^{\circ}$
$N(1990)7/2^+$	-32±15	5 \pm 20 $^{\circ}$	-70±25	$0\pm20^{\circ}$
$N(2190)7/2^{-}$	30±7	$5\pm15^{\circ}$	-23±8	13 \pm 20 $^{\circ}$

Table 1: The γN couplings (GeV $^{-1/2}10^{-3}$) at the pole position

The total cross section from the HADES data $\pi^- p \rightarrow \pi^+ \pi^- n$ and $\pi^- p \rightarrow \pi^- \pi^0 p$ data (W.Przigoda)

HADES data on $\pi^- p \to \pi^+ \pi^- n$ and $\pi^- \pi^0 p$ at P=656 MeV/c (W.Przigoda) (Preliminary)

HADES data on $\pi^- p \to \pi^+ \pi^- n$ and $\pi^- \pi^0 p$ at P=656 MeV/c (W.Przigoda) (Preliminary)

Fit of the H, P, T ($\gamma p \rightarrow \pi^0 \pi^0 p$) from CB-ELSA (T. Seifen, Preliminary)

Fit of the P_x, P_y , P_x^S , P_y^s observables ($\gamma p \to \pi^0 \pi^0 p$) from CB-ELSA (T. Seifen,

N ho(770) branching ratio (Preliminary)

$N(1440)1/2^+$	<1%	$N(1520)3/2^{-}$	12±2%	$N(1535)1/2^{-}$	2±1%
$N(1650)1/2^{-}$	13±2%	$N(1675)5/2^{-}$	<1%	$N(1685)5/2^+$	12±2%
$N(1710)1/2^+$	9±3%	$N(1720)3/2^+$	60 ±18%	$N(1880)1/2^+$	30 ±8%
$N(1895)1/2^{-}$	55±10%	$N(1875)3/2^{-}$	60 ±14%	$N(2060)5/2^{-}$	12±8%
$N(2120)3/2^{-}$	50±17%	$N(2000)5/2^+$	20±12%	$N(1900)3/2^+$	25±10%
$\Delta(1600)3/2^+$	2±2%	$\Delta(1620)1/2^{-}$	40 ±5%	$\Delta(1940)3/2^{+}$	8±4%
$\Delta(2200)3/2^+$	20 ±8%	$\Delta(1700)3/2^{-}$	12 ± 4%	$\Delta(2100)3/2^-$	11±5%
$\Delta(1750)1/2^{+}$	40±12%	$\Delta(1900)1/2^-$	30 ±8%	$\Delta(1905)5/2^+$	35±8%

0.1 N^* and Δ spectrum

Resonance	Rating	$N_{\rm pp}$	Resonance	Rating	$N_{\rm pp}$	Resonance	Rating	$N_{\mathbf{pp}}$
$N(1440)1/2^+$	****	13	$N(1520)3/2^{-1}$	****	17	$N(1535)1/2^{-1}$	****	15
$N(1650)1/2^{-1}$	****	18	$N(1675)5/2^{-1}$	****	14	$N(1680)5/2^+$	****	17
N(1685)	*		$N(1700)3/2^{-1}$	***	15	$N(1710)1/2^+$	***	14
$N(1720)3/2^+$	****	17	$N(1860)5/2^+$	**	9	$N(1875)3/2^{-1}$	***	16
$N(1880)1/2^+$	**	20	$N(1895)1/2^{-}$	**	17	$N(1900)3/2^+$	***	18
$N(1990)7/2^+$	**	9	$N(2000)5/2^+$	**	11	N(2040)3/2 ⁺	*	
$N(2060)5/2^{-}$	**	13	$N(2100)1/2^+$	*		$N(2150)3/2^{-}$	**	11
$N(2190)7/2^{-}$	****	11	$N(2220)7/2^{-}$	****	7	$N(2250)9/2^{-}$	****	
$N(2600)11/2^{-1}$	***		$N(2700)13/2^+$	**				
$\Delta(1232)$	****	8	$\Delta(1600)3/2^+$	***	12	$\Delta(1620)1/2^{-1}$	****	10
$\Delta(1700)3/2^-$	****	11	$\Delta(1750)1/2^+$	*		$\Delta(1900)1/2^{-1}$	**	13
$\Delta(1905)5/2^+$	****	11	Δ (1910)1/2 $+$	****	13	$\Delta(1920)3/2^+$	***	21
$\Delta(1930)5/2^-$	***		$\Delta(1940)3/2^{-1}$	*	5	$\Delta(1950)7/2^+$	****	13
$\Delta(2000)5/2^+$	**		$\Delta(2150)1/2^-$	*		$\Delta(2200)7/2^-$	*	
$\Delta(2300)9/2^+$	**		$\Delta(2350)3/2^-$	*		$\Delta(2390)7/2^+$	*	
$\Delta(2420)11/2^+$	****		$\Delta(2400)9/2^{-}$	****		$\Delta(2750)13/2^-$	**	
$\Delta(2950)15/2^+$	**							

		J^P	Status	Mass	Width
singlet	$\Lambda(1405)$	$1/2^{-}$	****	$1405^{+1.3}_{-1.0}$	50.5 ± 2.0
N(1535)	$\Lambda(1670)$	$1/2^{-}$	****	1660 - 1680	25 - 50
N(1650)	$\Lambda(1800)$	$1/2^{-}$	***	1720 - 1850	200 - 400
singlet	$\Lambda(1520)$	$3/2^{-}$	****	1519.5 ± 1.0	15.6 ± 1.0
N(1520)	$\Lambda(1690)$	$3/2^{-}$	****	1685 - 1695	50 - 70
N(1675)	$\Lambda(1830)$	$5/2^{-}$	****	1810 - 1830	60 - 110
N(2190)	$\Lambda(2100)$	$7/2^{-}$	****	2090 - 2110	100 - 250
N(1440)	$\Lambda(1600)$	$1/2^{+}$	***	1560 - 1700	50 - 250
N(1710)	$\Lambda(1810)$	$1/2^{+}$	***	1750 - 1850	50 - 250
N(1710)	$\Lambda(1890)$	$3/2^{+}$	****	1850 - 1910	60 - 200
N(1680)	$\Lambda(1820)$	$5/2^{+}$	****	1815 - 1825	70 - 90
N(2060)	$\Lambda(2110)$	$5/2^{+}$	***	2090 - 2140	150 - 250

Table 2: $\Lambda\text{-hyperons}$ used in the first fit of the data.

		J^P	Status	Mass	Width
N(1440)	$\Sigma(1660)$	$1/2^{+}$	***	1630 - 1690	36.0 ± 0.7
$\Delta(1230)$	$\Sigma(1385)$	$3/2^{+}$	****	1382.80 ± 0.35	40 - 200
$N(1680), \Delta(1905)$	$\Sigma(1915)$	$5/2^{+}$	****	1900 - 1935	80 - 160
$N(1990), \Delta(1950)$	$\Sigma(2030)$	$7/2^{+}$	****	2025 - 2040	150 - 200
N(1520)	$\Sigma(1670)$	$3/2^{-}$	****	1665 - 1685	40 - 80
$N(1535), \Delta(1620), N(1650)$	$\Sigma(1750)$	$1/2^{-}$	***	1730 - 1800	60 - 160
N(1675)	$\Sigma(1775)$	$5/2^{-}$	****	1770 - 1780	105 - 135
$N(1700), \Delta(1700)$	$\Sigma(1940)$	$3/2^{-}$	***	1900 - 1950	150 - 300

Table 3: Σ -Hyperons used in the first fit of the data.

Many Σ states are missing.

Kaon beam motivation

There is a hope to observe the baryon multiplets and therefore to confirm the states observed in the Nucleon and Delta sector.

Table 4: List of reactions used in the partial wave analysis.

$K^- p \to K^0 n$	$K^-p \to K^-p$	$K^-p\to\omega\Lambda$
$K^-p\to\pi^0\Lambda$	$K^-p\to\eta\Lambda$	$K^- p \to \pi^+ \Sigma^-$
$K^- p \to \pi^0 \Sigma^0$	$K^- p \to \pi^- \Sigma^+$	$K^-p\to\pi^0\pi^0\Lambda$
$K^- p \to K^+ \Xi^-$	$K^- p \to K^0 \Xi^0$	$K^- p \to \pi^0 \pi^0 \Sigma^0$

W range is 1.57 – 1.68

Analysis of the Kp collision reactions (Preliminary) (M.Matveev)

Σ(-)

Σ(+)

		ANL-Osaca	Bn-Ga	Model A	Model B	Bn-Ga
$K^- p \to K^- p$	$d\sigma/d\Omega$	3962	5495	3.07	2.98	2.28
	P	510	859	2.04	2.08	1.79
$K^- p \to \bar{K}^0 n$	$d\sigma/d\Omega$	2950	3445	2.67	2.75	1.62
$K^- p \to \pi^- \Sigma^+$	$d\sigma/d\Omega$	1792	2095	3.37	3.49	3.17
	P	418	578	1.30	1.28	2.06
$K^- p \to \pi^0 \Sigma^0$	$d\sigma/d\Omega$	580	581	3.68	3.50	3.57
	P	196	124	6.39	5.80	1.51
$K^- p \to \pi^+ \Sigma^-$	$d\sigma/d\Omega$	1786	2082	2.56	2.18	1.80
$K^- p \to \pi^0 \Lambda$	$d\sigma/d\Omega$	2178	2478	2.59	3.71	1.82
	P	693	732	1.41	1.73	1.73
$K^- p \to \eta \Lambda$	$d\sigma/d\Omega$	160	160	2.69	2.03	1.52
	P	18	_	0.94	3.83	—
$K^- p \to K^0 \Xi^0$	$d\sigma/d\Omega$	33	67	1.24	1.61	1.20
$K^- p \to K^+ \Xi^-$	$d\sigma/d\Omega$	92	193	2.05	1.74	1.38
$K^- p \to \Lambda \omega$	$d\sigma/d\Omega$	_	300	_	_	1.08

 $K^-p
ightarrow \pi^0 \pi^0 \Lambda$ (beam momenta 720 and 750 MeV/c)

 $K^-p
ightarrow \pi^0\pi^0\Sigma^0$ (beam momenta 720 and 750 MeV/c)

	J^P	Status	Mass	Width
$\Sigma(1660)$	$1/2^{+}$	***	1630 - 1690	36.0 ± 0.7
$\Sigma(1385)$	$3/2^{+}$	****	1382.80 ± 0.35	40 - 200
$\Sigma(1915)$	$5/2^{+}$	****	1900 - 1935	80 - 160
$\Sigma(2030)$	$7/2^{+}$	****	2025 - 2040	150 - 200
$\Sigma(1670)$	$3/2^{-}$	****	1665 - 1685	40 - 80
$\Sigma(1750)$	$1/2^{-}$	***	1730 - 1800	60 - 160
$\Sigma(1775)$	$5/2^{-}$	****	1770 - 1780	105 - 135
$\Sigma(1940)$	$3/2^{-}$	***	1900 - 1950	150 - 300
$\Sigma(1665)$	$1/2^{-}$		1670 ± 15	210 ± 20
$\Sigma(2150)$	$1/2^{-}$		2160 ± 20	220 ± 25
$\Sigma(2250)$	$5/2^{-}$		2250 ± 30	330 ± 40

Table 5: Σ -Hyperons used in the first fit to the data.

SUMMARY

- The energy independent analysis of the $\gamma p \to K \Lambda$ data is consistent with the energy dependent analysis.
- The analysis of the new data on the η and η' photoproduction confirms the observed earlier $S_{11}(1895)$ state. There is puzzling behavior of the data near the $\eta'p$ threshold.
- The analysis of the $\gamma n \to K\Lambda$ and $\gamma n \to K\Sigma$ reactions confirms states in the mass region around 1900 MeV.
- The analysis of the reactions with two pion production provides an important information for the classification of the observed states and branching to the two meson final states.
- The analysis of the Kp collision data reveals the presence of the unknown Σ -hyperons. There is a hope to observe the baryon multiplets and therefore to confirm the states found in the Nucleon-Delta sector.