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Low energy chiral EFT

» A very well motivated assumption:
QCD is a correct theory of the strong interaction.

» Perturbation theory is not applicable at low energies.
Chiral EFT provides with a solution to this problem.

» Started with:
S. Weinberg, Physica A 96, 327 (1979).



Based on the symmetries of QCD, chiral EFT aims at
reproducing the S-matrix of QCD in low-energy region.

Hadronic one-particle states are represented by dynamical
fields in EFT.
Effective degrees of freedom: pions, nucleons, A(1232), ...

Chiral EFT provides with a systematic expansion of physical
quantities in powers of (small scale(s)/ large scale)

Bound states require resummation of infinitely many diagrams.
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Most general EFT Lagrangian of Hadrons with symmetries of
QCD gives the most general S-matrix with these symmetries.

To obtain S-matrix of QCD one needs to fix properly the
parameters of EFT - - -

- a finite number of them to achieve a finite accuracy!

... EFT # QCD.

QCD calculates physical quantities in terms of fundamental
parameters, EFT only relates physical quantities to each other
at low-energies, like

ok(E) = F(E,o1(pi), o2(p), -+, p)-



What to do?

» Write down the most general effective Lagrangian.

» Consider all Feynman diagrams contributing to the process in
question.

» Renormalize/subtract loop diagrams.

» Apply power counting - expansion in powers of small
parameters due to spontaneously broken chiral symmetry.

» Sum up all renormalized diagrams contributing up to given
order.

» Only a finite number of diagrams contribute at any given order
in one-nucleon sector.



Effective Lagrangian

Effective Lagrangian of pions, nucleons, A and Roper resonances
as an expansion in quark masses and derivatives acting on pion
fields:

Eeff = £7r7r + »Cﬂ'N + EWA + ['ﬂ'Fr’ + ['ﬂ'NA + LWNF? + 'Cﬂ'AR'
From the purely mesonic sector we need the following structures

2 2 N2

J FT@,LuaMUTHﬂqu),
1 1

&) = §/4<U“u,¢><><+>+ﬁ(/s+/4)<><+>2,

where ( ) denotes the trace in flavor space, F is the pion decay
constant in the chiral limit and M is the pion mass at leading order.
The pion fields are contained in the 2 x 2 matrix U, with u = /U and

u, = i [UTf)MU - u@uuq :

M2 0
+ Ty gt T _
X = u'xu +uxu, X_|:O M2:|



Terms of the Lagrangian with pions and baryons:
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where his mNA coupling at lowest order and bs, bg, fi, >, f4 and f5

are LECs of higher orders.
Z1, Zo and z3 are off-shell parameters.

Three chiral structures, w/,, w{lﬂ and yX, are given by
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Wy and Vg are the fields of the nucleon and the Roper resonance,
respectively.

Rarita-Schwinger field ¥, represents the A resonance.

¢2 is the isospin-3,2 projector, w/, = } (v'u,) and

Or*(z) = gh* + zyH~¥, where z is a so-called off-shell parameter.
We fix the off-shell structure by adopting g» = —g5; = 0 and

VARES z=0.

The covariant derivatives are defined as follows:

DVnpr = (Ou+Tu)VnN/R,
(D“\U) = 8u\|fyv,' — 2ie,-/-kF,L7k\UVJ + F#\UV7, ,
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wN scattering in EFT of pions, nucleons and deltas
The amplitude of 73(q) + N(p) — 7 (') + N(p') in the isospin limit:

/ 1
T23(s, t,u) = X;v' {6a/aT+(s, t,u)+ E[Ta/, Ta) T~ (s, t, u)} XN »

where & and a are Cartesian isospin indices, 7; - Pauli matrices and
XN, XN denote nucleon iso-spinors.

Lorentz decomposition of T+:
T*(s, t,u) = ) (p) {Di(s, t,u) — ﬁ[ﬂ’, 4B~ (s, t, U)} u®(p),
N

with (s'), (s) denoting the spins of U, u, respectively.
Lorentz decomposition is not unique, a popular alternative form is

T*(s, t,u) = ) (p) {Ai(s, t,u) + % (d +q) B=(s.t, u)} u®)(p) .

Decomposition in terms of D and B is better suited for the chiral EFT
due to the cancellation between contributions from A and B.



Power counting

For diagrams involving only pion and nucleon lines, we use the
standard power counting considering the pion mass M and small
momenta as of order O(p).

S. Weinberg, Nucl. Phys. B 363, 3 (1991).
G. Ecker, Prog. Part. Nucl. Phys. 35, 1 (1995).

For diagrams with delta lines we apply the power counting of
T. R. Hemmert, B. R. Holstein and J. Kambor, J. Phys. G 24, 1831 (1998),
that is we count A = ma — my as of order O(p).

For s — m2A delta-propagator diverges, therefore we need to sum up
self-energy insertions, i.e. consider the dressed propagator

D (k) ~1/(k — ma — X(k)) ~ 1/(=Z(k)) ~ 1/p°.
We follow an alternative way by using the complex-mass scheme

where the undressed propagator contains the width of the unstable
particle and therefore the re-summation is not necessary.



Tree order contributions
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Figure: Tree diagrams contributing to 7N scattering up to order O(p?).
Crossed diagrams are not shown.



Leading one-loop contributions
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Figure: One-loop Feynman diagrams without explicit deltas to order O(p?).
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Figure: One-loop diagrams with explicit deltas to order O(p®). Crossed
diagrams and diagrams with the reversed time ordering are not shown.



Renormalization

We apply EOMS renormalization scheme of

J. Gegelia and G. Japaridze, Phys. Rev. D 60, 114038 (1999),

T. Fuchs, J. Gegelia, G. Japaridze and S. Scherer, Phys. Rev. D 68,
056005 (2003).

and its generalization for delta.

To calculate loop diagrams we apply dimensional regularization.

UV divergences are removed by counter terms generated by the
effective Lagrangian.

Finite pieces of counter terms are fixed such that the subtracted
contributions in physical quantities satisfy the power counting.

Expressions of diagrams and subtraction terms are huge!

Final finite amplitudes respect the power counting and have the
correct analytic behaviour.



We fit the unknown LECs to the phase shifts of the S- and P-waves.

Then we predict the D- and F-wave phase shifts and the threshold
parameters using the determined LECs.

PW analysis of the 7N amplitudes of several groups are available:

R. Koch and E. Pietarinen, Nucl. Phys. A 336, 331 (1980).
R. Koch, Nucl. Phys. A 448, 707 (1986).

E. Matsinos, W. S. Woolcock, G. C. Oades, G. Rasche and A. Gashi, Nucl.
Phys. A 778, 95 (2006),

R. A. Arndt, W. J. Briscoe, I. I. Strakovsky and R. L. Workman, Phys. Rev.
C 74, 045205 (2006).

Unfortunately, none of these groups provide uncertainties.

Therefore, we prefer to perform fits to the phase shifts generated by
the recent RS-equation analysis of the 7NN scattering:

M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. MeiB3ner, Phys. Rept.
625, 1 (2016).



There are eleven LECs involved in the 7N amplitudes in total:
Ci, C2, C3, C4, Oy + o, O3, ds, di4 — dis, grn, Grna @Nd gy.
We fix g,y coupling at g2,,/(4r) = 13.69 & 0.20,

V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga and D. R. Phillips,
Phys. Lett. B 694, 473 (2011).
V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga and D. R. Phillips,
Nucl. Phys. A 872, 69 (2011).

Fit-1 corresponds to the delta-less case and is performed up to
Whax=1.11 GeV.

Our plots for Fit-I are shown in the next page.
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Figure: Phase shifts of fit-I.

Dots - RS phase shifts; Circles - GWU phase shifts; Red lines - our results.
Red narrow and wide bands - uncertainties propagated from the errors of
LECs and theoretical uncertainties, respectively.

Error bands in P33 and S31 PWs do not cover the RS and GWU data
beyond the fitting range — theoretical errors underestimated.



Adding the delta degree of freedom should mostly improve the
description of the P33 wave in the A-resonance region.

We performed two fits (Fit-Il and Fit-1ll) using 1.2 GeV as W, for
the P33 partial wave and 1.11 GeV for the other five PWs.

Fit Il is done by adding the LO tree contribution of the
delta-exchange diagrams to the delta-less case and serves only the
purpose of estimating the effect of the loop diagrams with delta.

Unlike previous works,

J. M. Alarcon, J. Martin Camalich and J. A. Oller, Annals Phys. 336, 413
(2013),

Y. H. Chen, D. L. Yao and H. Q. Zheng, Phys. Rev. D 87, 054019 (2013),

we incorporated the complex pole position and obtained better
results with smaller uncertainties, for instance, the large errors in
di4 — di5 are substantially reduced.

Our plots for Fit-1l are shown in next page.
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Figure: Phase shifts of Fit-II.

Dots with error bars - RS phase shifts; Circles - GWU phase shifts; The
red line - our results.

The red narrow error bands - the uncertainties propagated from the errors
of LECs.The wide dashed error bands - the theoretical uncertainties.



Fit-11l is done with the full contributions of pions, nucleons and deltas
up to NNLO.

The obtained LECs of Fit-1ll are different from those of Fit-l1l due to
the inclusion of contributions of loop diagrams involving delta lines.

All the ¢; and most of the higher order LECs are of natural size.
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Figure: Phase shifts from BChPT with explicit delta - Fit-lII.

Dots with error bars - RS phase shifts; Circles - GWU phase shifts. The
red line - the result of Fit 11

The red narrow error bands - uncertainties propagated from the errors of
LECs. The wide dashed error bands - theoretical uncertainties.



Compared to the plots in Fit-1l, Fit-1ll improves the predictions
beyond fitting ranges in most of the partial waves, especially for the
Sy wave.

The larger theoretical error in Fit-Ill compared to Fit-1l is due to the
large contributions of delta-loop diagrams, which are not taken into
account in estimation of the theoretical error of Fit-II.

Imaginary part of hs from Fit-Ill is small compared to the
corresponding real part Re[ha] and our determination for Re[h,] is
close to the large-N, prediction.

The obtained g; for Fit-1ll is nearly consistent (within the error bars)
with the corresponding large-Ng result, |g1| = 9g4/5 ~ 2.28.

g1 appears only in the loop contribution, hence a precise
determination of its value is not to be expected.



Table: LECs for various fits. ¢; and dj are in GeV~' and GeV~2, resp. Stat.
and syst. uncert. shown in the first and the second brackets, respectively.

Fit-] Fit-11 Fit-I11
LEC N (i.e. A) N+LO A N+A
c —122(2)(2) —0.99(2)(1)  —-1.31(2)()
C 3.58(3)(6) 1.38(3)(1) 0.78(4)(2)
C3 —6.04(2)(9)  —233(3)(1)  —2.55(10)(7)
Cs 3.48(1)(3) 1.71(2)(1) 1.20(4)(2)
diso | 3.25(4)(9) 0.14(4)(3)  4.85(68)(64)
ds | —2.88(8)(14) —0.97(8)(15) —0.62(10)(15)
ds | —0.15(6)(14)  0.39(6)(11)  —0.93(11)(15)
dia1s | —6.19(7)(12)  —1.08(8)(3)  5.54(2.79)(2.01)
grN 13.12¢ 13.12* 13.12*
ha - 1.28(1)(1) 1.42(1)(1) —
i0.16(1)(1)
g - - —1.21(46)(39)
2 /dof 273.106(2:;.7) _ 332;3(22.4) _ 37322(21909) _
1.31(11) 1.07(9) 1.18(9)




Using the fitted LECs we predict the phase shifts of higher PWs.
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Figure: Phase shifts of the D and F PWSs from the delta-less and delta-full
BChPT using the parameters of Fit-1 (red) and Fit-ll (blue), respectively.
The circles correspond to phase shifts by the GWU group.

Except for D33 channel, our predictions agree qualitatively with the
GWU results and the predictions of the delta-full theory are
somewhat better than those of the delta-less theory.



Scattering lengths and volumes

General form of the effective range expansion is given by

P2 T eot[dy,] = Qi\mz + Z et\P’zn,

where p is the three-momentum of the nucleon in center-of-mass
frame, ais the threshold parameter, r - the effective range, and v;, -
the shape parameters.

Results of the threshold parameters corresponding to the three
different fits are presented below, together with the determinations
from the Roy-Steiner equation analysis.



Table: Scattering lengths and volumes. The numbers in brackets
correspond to the errors propagated from the uncertainties of LECs and
the theoretical errors, respectively.

Th. Par.

Fit-I Fit-Il Fit-1ll RS

ag, [1073M; ]
ay, [1073M; ]
al [1073M;3]
a,_ [1073M;3]
al, [1073M®]
a,, [1073M;®]

—0.6(7)(3.4) —1.1(7)(3.0) —0.5(7)(7.1) —0.9(1.4)
85.7(5)(3.3) 85.8(4)(1.1) 85.8(3)(1.0)  85.4(9)
—49.8(1)(16) —52.5(4)(4.7) —51.0(5)(6.7) ~50.9(1.9)
~9.7(3)(9.5) —11.3(3)(3.2)-9.5(2)(1.7) —9.9(1.2)
139.9(1.8)(12)131.0(4)(4.) 131.5(5)(8.8) 131.2(1.7)
—84.0(6)(4.) —80.3(1)(1.4) —80.4(2)(2.3) —80.3(1.1)




Nucleon sigma term

There are many studies of the 7N o-term, e.g., see

M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meif3ner, Phys. Rev.
Lett. 115, 092301 (2015),

V. Bernard, N. Kaiser and U.-G. Mei3ner, Z. Phys. C 60, 111 (1993),

J. M. Alarcon, J. Martin Camalich and J. A. Oller, Phys. Rev. D 85, 051503
(2012).

A high-precision determination of the o,y was done from
RS-equation analysis based on the improved Cheng-Dashen
low-energy theorem and o,y = (59.1 + 3.5) MeV was reported in
M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meif3ner, Phys. Rev.
Lett. 115, 092301 (2015).

The =N sigma term o, can be obtained from the nucleon mass by
applying the Hellmann-Feynman theorem,

~ 8mN

A my +m
oN =M m:( u d)

om’ 2 ’

where my, is the nucleon pole mass.



Figure: Tree and one-loop diagrams contributing to the self-energies of the
nucleon and the delta resonance up to the order O(p?).

The results for o,y based on the different sets of fitted parameters
are shown in next page.



Table: The =N sigma term in units of MeV. The numbers in brackets
correspond to the errors propagated from the uncertainties of LECs and
the theoretical errors, respectively.

Fit-I Fit-Il Fit-11l RS
LO 943 76.5 101.2 —
NLO ~19.5 ~19.5 -32.7 -
Sum | 74.8(2.2)(11.4) 57.1(1.9)(7.0) 68.5(1.9)(7.6)  59.1(3.5)

Our prediction for Fit-1 is marginally consistent with the RS
determination when the large uncertainties are taken into account.

For Fit-1l we obtained o,y = 57.1(1.9)(7.0) MeV, which agrees with
the RS determination very well.

Result of Fit-lll o,y = 68.5(1.9)(7.6) MeV improves the delta-less
result and within the error it overlaps the value of the RS analysis.



Roper resonance in chiral EFT

Roper resonance is the first nucleon resonance that decays into
N7, besides decaying into N.

Despite the fact that the Roper resonance was found a long time ago
L. D. Roper, Phys. Rev. Lett. 12, 340 (1964).
a satisfactory theory of this state is still missing.

First steps in this direction within chiral EFT have been made in

B. Borasoy, P. C. Bruns, U.-G. MeiBBner and R. Lewis, Phys. Lett. B 641,
294 (20086).

D. Djukanovic, J.Gegelia, S. Scherer, Phys. Lett. B 690, 123 (2010).

B. Long and U. van Kolck, Nucl. Phys. A 870-871, 72 (2011).

T. Bauer, J.Gegelia, S. Scherer, Phys. Lett. B 715, 234 (2012).

E. Epelbaum, J.Gegelia, U.-G. MeiBner and D. L. Yao, Eur. Phys. J. C 75,
no. 10, 499 (2015).



We present the calculation of the width of the Roper resonance at
leading two-loop order in BChPT of pions, nucleons, the delta and
Roper resonances.

J.Gegelia, U.-G. MeiBBner and D. L. Yao, “The width of the Roper resonance
in baryon chiral perturbation theory,” Phys. Lett. B 760, 736 (2016).



The width of the Roper resonance

The dressed propagator of the Roper resonance can be written as
B i
P —mpo— Xa(P)’

where —i X g(#) is the self-energy.

1 Sr(p)

The pole of the dressed propagator Sk is obtained by solving
S;'(2) =z~ mpy — TR(2) =0.

We define the physical mass and the width of the Roper resonance
by parameterizing the pole as
;]

Z=mp—i-2.
™00



Topologies of the one- and two-loop Roper self-energy diagrams
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Figure: One and two-loop self-energy diagrams of the Roper resonance.
The dashed and thick solid lines represent the pions and the Roper
resonances, respectively. The thin solid lines in the loops stand for either
nucleons, Roper or delta resonances.



We parameterize the pole as
Z =M+ hdzy + h26zo + O(h%),

where mp = m% + 4cf M2, with m% the Roper mass in the chiral limit
and write the self-energy as an expansion:

YR =h¥+h2E, +0O(h%).
By expanding the equation for z in powers of 7, we get
hozy + W20z — KE1(mp) — K262 X (mp) — h2Eo(my) + O(R%) = 0.
Solving order by order we obtain

6z = Xq(my),
020 = 21(m2)2’1(m2)+22(m2).



The width takes the form

R = h2ilm[(my)]
#1220 {1 {54 (ma)] Re ()] + Re 23 (me)] m [ )]}
+ K2 2iIm [Ta(mo)] + O(K3).

It turns out that the contribution of the second term is O(5°).

To calculate the contributions of the first and third terms we use the
Cutkosky cutting rules.

Only contributions obtained by cutting the lines, corresponding to
stable particles, are needed.
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Figure: Diagrams contribution to the decay R — N up to leading one-loop
order. Dashed, solid, double and thick solid lines correspond to pions,
nucleons, deltas and Roper resonances, respectively. The numbers in the
circles give the chiral orders of the vertices.



The R(p) — N(p')=4(q) decay width reads

N/2(m3, m3, MP)

|M1 ’2 ;
167 mf’?

RN =

with A\(x,y,z) = (x — y — 2)? — 4yz and M the corresponding
decay amplitude.



The decay width corresponding to the =7 N final state is given by:

1 (mp—my)? S+ MP
r 7N = AA 2 /m N2 ds ds R
R—smrN 328 (27 ) A/\/@ 1 /32 2 [ M|

where M is the R(p) — N(p')7?(q1)7°(q») decay amplitude and

m2 4+ m2, +2M? — s 1
Spic = TP S A s i RN, ME M)
1

We consider mg — my ~ 400 MeV as a small parameter of the order
51 and count M, ~ §2.

As sy varies from 4M? to (mg — my)?, we assign the order 42 to it.
We also count mg — ma ~ 62.



LO tree diagrams contributing to the R — 7« N decay:

Figure: Tree diagrams contributing to the R — =7 N decay. Crossed
diagrams are not shown. Dashed, solid, double and thick solid lines
correspond to pions, nucleons, deltas and Roper resonances, respectively.
The numbers in the circles give the chiral orders of the vertices.

The delta propagators in these diagrams are dressed. The non-pole
parts are of higher orders and therefore can be dropped.

The contributions of the loop diagrams are suppressed by additional
powers of § so that they do not contribute at order §°.



Thus, the contributions of the one- and two-loop self-energy
diagrams in the width of the Roper resonance at order ° sum up to

MR =TRoaNn + RSN



Numerical results
We use the following standard values of the parameters from PDG

M, = 139 MeV, my = 939 MeV, ma = 1210+ 1 MeV,
Fa=100+2MeV, mg=1365=+15MeV, F, = 92.2 MeV,

and obtain
FRuxn = 550(57.7) g2ng MeV,
MRomen = | 1.49(0.58) g3 92ng — 2.76(1.07) ga 95nR IR

+ 1.48(0.59) g?\5 9% +2.96(0.94) g4 9. ng hhg
3.79(1.37) g.nr 95 hhg + 9.93(5.45) h?h2 | MeV.

Further, we substitute g4 = 1.27 and h = 1.42 4+ 0.02.
The latter value is taken from

D. L. Yao, et.al. JHEP 1605, 038 (2016).



We pin down g, ng by reproducing
RN = (123.5+ 19.0) MeV
from PDG, which yields

g-nr = +£(0.47 +0.11).

Following
S. R. Beane and U. van Kolck, J. Phys. G 31, 921 (2005)
we assume gr = ga and hg = h and obtain:

FRoren = [0.53(32) — 0.98(60) + 0.53(32) + 3.57(1.41)
F 4.57(1.97) + 40.4(22.2)] MeV = 40.5(22.3) MeV.

The largest contribution comes from the decay diagram with
intermediate A state.



Further, using the approach of

E. Epelbaum, H. Krebs and U.-G. Meif3ner, Eur. Phys. J. A 51, no. 5, 53
(2015)

we estimate the theoretical error due to the omitting the higher order
contributions and obtain

Rnen = (40.5+22.3+16.8) MeV,
which is consistent with
Cexn = (66.5 +9.5) MeV

quoted by PDG.



Width of the A-resonance up to order p°

J.Gegelia, U.-G.MeiBner, D.Siemens, D.L.Yao, Phys. Lett. B 763, 1 (2016).

Dressed A-propagator in d space-time dimensions:

, Yy PRy = AHpY d-2
—iD"(p) = 9" — = - p'p”
d-—1 (d— 1)m°A (d— 1)(mg)2

—1
X + pole free terms ,
p—m}—%T1-pTs

where the self-energy of the A-resonance is parameterised as:

T

1(p?) g + T2(P?) " + Ta(p?) Py’
+ L4(P?) P + Ts(p?) prp” + Te(PP) PG + T7(PP) By
+ Tg(P?) PP + To(P?) BAMp” + T10(PP) PRV P”



Pole position z of the A-propagator can be found by solving
z—m —X(Z%) - z%(22) = z— m) — X(2) = 0.
Pole mass and the width are defined by parameterizing z as

T
Z:mA*I?A.



We calculate z perturbatively order by order in / (loop expansion).
For that purpose we write:

Y =h¥q)+ L) + O(h°),

and obtain the following expression for the width

A = h2iIm [2(1)(mA)] + hz 2i {Im [2(1)(mA)} Re [ZEMmA)}

+ Re [2(1)(mA)] Im [Z’m(mA)} } + K22iIm [2(2)(mA)} + O(hs).

For ¥ (1) we used the corresponding explicit expressions.

For the two-loop contribution we use the Cutkosky cutting rules, that
is we relate it to Aa_..n amplitude via

ma 4+ my)2 — M2] | (m2 — m2, — M2)? — 4M2n2 32
™ A N ')

ra = .
A 1927rm},

X |AA—>7rN|2 .



The tree and one-loop diagrams contributing to the A — 7N decay
up to order p®:

(t1) (t2) (t3)
(a) (b) (c) (d)



Calculating one- and two-loop contributions in the delta width we
extracted hy from the experimental value of the delta width for a
given value of the leading wA coupling constant g:

A=53.91 3 + 0.879?h3 — 3.31g,h5 — 0.99 h5 .
Substituting F'a = 100 + 2 MeV from the PDG we extract hy as a
function of gy.

The obtained result is plotted in next page.

Such a correlation between 7NA and A couplings exists in the
large N¢ limit but, as far as we know, we obtained it for the first time
for the real world with N = 3.
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Figure: ha as a function of g4. The central line corresponds to
A = 100 MeV, while the band is obtained by varying ' ~ 98 — 102 MeV.

The dot-dashed lines correspond to delta widths indicated by their values.

The blue dot with error bars represents the real part of the coupling fitted
to 7N scattering, the purple dots stand for the leading order 7NA coupling
in the large-N; limit and the horizontal dashed line with cyan band
corresponds to the value (with error represented by the band) from

V. Bernard, E. Epelbaum, H. Krebs and U.-G. Meif3ner, Phys. Rev. D 87,
no. 5, 054032 (2013).



Summary

» Pion-nucleon scattering in BChPT with delta:

» One-loop full order p? calculation in a chiral EFT with pions,
nucleons and delta resonances.

» Fit of unknown parameters to S and P waves.

» Reasonable description of phase shifts and threshold
parameters.

» Width of the Roper resonance calculated up to NLO of BChPT:

» One of the three unknown couplings we fix by reproducing the
PDG value for 'g_xn-

» Assuming that the remaining two couplings of the Roper
interaction take values equal to those of the nucleon, we obtain
the result for I'z_, -n consistent with the PDG value.

» To improve the accuracy of our calculation, three-loop
self-energy diagrams need to be calculated.

» Width of the delta resonance.
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