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Low energy chiral EFT

I A very well motivated assumption:
QCD is a correct theory of the strong interaction.

I Perturbation theory is not applicable at low energies.

Chiral EFT provides with a solution to this problem.

I Started with:

S. Weinberg, Physica A 96, 327 (1979).



I Based on the symmetries of QCD, chiral EFT aims at
reproducing the S-matrix of QCD in low-energy region.

I Hadronic one-particle states are represented by dynamical
fields in EFT.
Effective degrees of freedom: pions, nucleons, ∆(1232), ...

I Chiral EFT provides with a systematic expansion of physical
quantities in powers of (small scale(s)/ large scale)

I Bound states require resummation of infinitely many diagrams.



I Most general EFT Lagrangian of Hadrons with symmetries of
QCD gives the most general S-matrix with these symmetries.

I To obtain S-matrix of QCD one needs to fix properly the
parameters of EFT · · ·

I · · · a finite number of them to achieve a finite accuracy!

I · · · EFT 6= QCD.

QCD calculates physical quantities in terms of fundamental
parameters, EFT only relates physical quantities to each other
at low-energies, like

σk (E) = F (E , σ1(µi), σ2(µi), · · · , µ).



What to do?

I Write down the most general effective Lagrangian.

I Consider all Feynman diagrams contributing to the process in
question.

I Renormalize/subtract loop diagrams.

I Apply power counting - expansion in powers of small
parameters due to spontaneously broken chiral symmetry.

I Sum up all renormalized diagrams contributing up to given
order.

I Only a finite number of diagrams contribute at any given order
in one-nucleon sector.



Effective Lagrangian
Effective Lagrangian of pions, nucleons, ∆ and Roper resonances
as an expansion in quark masses and derivatives acting on pion
fields:

Leff = Lππ + LπN + Lπ∆ + LπR + LπN∆ + LπNR + Lπ∆R.

From the purely mesonic sector we need the following structures

L(2)
ππ =

F 2

4
〈∂µU∂µU†〉+

F 2M2

4
〈U† + U〉,

L(4)
ππ =

1
8

l4〈uµuµ〉〈χ+〉+
1

16
(l3 + l4)〈χ+〉2,

where 〈 〉 denotes the trace in flavor space, F is the pion decay
constant in the chiral limit and M is the pion mass at leading order.
The pion fields are contained in the 2× 2 matrix U, with u =

√
U and

uµ = i
[
u†∂µu − u∂µu†

]
,

χ+ = u†χu† + uχ†u , χ =

[
M2 0
0 M2

]
.



Terms of the Lagrangian with pions and baryons:

L(1)
πN = Ψ̄N

{
i /D −m +

1
2

g /uγ5
}

ΨN ,

L(2)
πN = Ψ̄N

{
c1〈χ+〉 −

c2

4m2 〈u
µuν〉(DµDν + h.c.)

+
c3

2
〈uµuµ〉 −

c4

4
γµγν [uµ,uν ]

}
ΨN ,

L(3)
πN = Ψ̄N

{
−d1 + d2

4m
(
[uµ, [Dν ,uµ] + [Dµ,uν ]]Dν + h.c.)

+
d3

12m3 ([uµ, [Dν ,uλ]](DµDνDλ + sym.) + h.c.
)

+i
d5

2m
([χ−,uµ]Dµ + h.c.)

+i
d14 − d15

8m
(σµν〈[Dλ,uµ]uν − uµ[Dν ,uλ]〉Dλ + h.c.)

+
d16

2
γµγ5〈χ+〉uµ +

id18

2
γµγ5[Dµ, χ−]

}
ΨN ,



L(1)
πR = Ψ̄R

{
i /D −mR +

1
2

gR/uγ5
}

ΨR ,

L(2)
πR = Ψ̄R

{
cR

1 〈χ+〉
}

ΨR ,

L(1)
πNR = Ψ̄R

{gπNR

2
γµγ5uµ

}
ΨN + h.c. ,

L(1)
π∆ = −Ψ̄i

µξ
3
2
ij

{(
i /Djk −m∆δ

jk
)

gµν − i
(
γµDν,jk + γνDµ,jk

)
+ iγµ /Djk

γν + m∆δ
jkγµγν +

g1

2
/ujkγ5gµν

+
g2

2
(γµuν,jk + uν,jkγµ)γ5 +

g3

2
γµ/ujkγ5γ

ν
}
ξ

3
2
klΨ

l
ν ,

L(1)
πN∆ = h Ψ̄i

µξ
3
2
ij Θµα(z1) ωj

αΨN + h.c. ,

L(2)
πN∆ = Ψ̄i

µξ
3
2
ij Θµα(z2)

[
i b3ω

j
αβγ

β + i
b8

m
ωj
αβ i Dβ

]
ΨN + h.c. ,



L(3)
πN∆ = Ψ̄i

µξ
3
2
ij Θµν(z3)

[
f1
m

[Dν , ω
j
αβ]γαi Dβ − f2

2m2 [Dν , ω
j
αβ]{Dα,Dβ}

+f4ωj
ν〈χ+〉+ f5[Dν , iχ

j
−]
]

ΨN + h.c.,

where h is πN∆ coupling at lowest order and b3, b8, f1, f2, f4 and f5
are LECs of higher orders.
z1, z2 and z3 are off-shell parameters.

Three chiral structures, ωi
α, ωj

αβ and χk
−, are given by

ωi
α =

1
2
〈τ iuα〉 = − 1

F
∂απ

i +
1

6F 3 (∂απ
iπaπa − πi∂απ

aπa) +O(π5) ,

ωj
αβ =

1
2
〈τ j [∂α,uβ]〉 = − 1

F
∂α∂βπ

j +O(π3) ,

χk
− =

1
2
〈τ kχ−〉 = −2i

F
M2πk +O(π3) .



ΨN and ΨR are the fields of the nucleon and the Roper resonance,
respectively.

Rarita-Schwinger field Ψν represents the ∆ resonance.
ξ

3
2 is the isospin-3/2 projector, ωi

α = 1
2 〈τ iuα〉 and

Θµα(z) = gµα + zγµγν , where z is a so-called off-shell parameter.

We fix the off-shell structure by adopting g2 = −g3 = 0 and
z1 = z̃ = 0.

The covariant derivatives are defined as follows:

DµΨN/R = (∂µ + Γµ) ΨN/R ,

(DµΨ)ν,i = ∂µΨν,i − 2 i εijk Γµ,k Ψν,j + ΓµΨν,i ,

Γµ =
1
2

[
u†∂µu + u∂µu†

]
= τk Γµ,k .



πN scattering in EFT of pions, nucleons and deltas
The amplitude of πa(q) + N(p)→ πa′(q′) + N(p′) in the isospin limit:

T a′a
πN (s, t ,u) = χ†N′

{
δa′aT +(s, t ,u) +

1
2

[τa′ , τa]T−(s, t ,u)

}
χN ,

where a′ and a are Cartesian isospin indices, τi - Pauli matrices and
χN , χN′ denote nucleon iso-spinors.

Lorentz decomposition of T±:

T±(s, t ,u) = ū(s′)(p′)
{

D±(s, t ,u)− 1
4mN

[/q′, /q]B±(s, t ,u)

}
u(s)(p) ,

with (s′), (s) denoting the spins of ū, u, respectively.
Lorentz decomposition is not unique, a popular alternative form is

T±(s, t ,u) = ū(s′)(p′)
{

A±(s, t ,u) +
1
2
(
/q′ + /q

)
B±(s, t ,u)

}
u(s)(p) .

Decomposition in terms of D and B is better suited for the chiral EFT
due to the cancellation between contributions from A and B.



Power counting

For diagrams involving only pion and nucleon lines, we use the
standard power counting considering the pion mass M and small
momenta as of order O(p).

S. Weinberg, Nucl. Phys. B 363, 3 (1991).
G. Ecker, Prog. Part. Nucl. Phys. 35, 1 (1995).

For diagrams with delta lines we apply the power counting of

T. R. Hemmert, B. R. Holstein and J. Kambor, J. Phys. G 24, 1831 (1998),

that is we count ∆ = m∆ −mN as of order O(p).

For s → m2
∆ delta-propagator diverges, therefore we need to sum up

self-energy insertions, i.e. consider the dressed propagator
Dµν(k) ∼ 1/(/k −m∆ − Σ(k)) ∼ 1/(−Σ(k)) ∼ 1/p3.

We follow an alternative way by using the complex-mass scheme
where the undressed propagator contains the width of the unstable
particle and therefore the re-summation is not necessary.



Tree order contributions
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Figure: Tree diagrams contributing to πN scattering up to order O(p3).
Crossed diagrams are not shown.



Leading one-loop contributions
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Figure: One-loop Feynman diagrams without explicit deltas to order O(p3).
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Figure: One-loop diagrams with explicit deltas to order O(p3). Crossed
diagrams and diagrams with the reversed time ordering are not shown.



Renormalization

We apply EOMS renormalization scheme of

J. Gegelia and G. Japaridze, Phys. Rev. D 60, 114038 (1999),
T. Fuchs, J. Gegelia, G. Japaridze and S. Scherer, Phys. Rev. D 68,
056005 (2003).
and its generalization for delta.

To calculate loop diagrams we apply dimensional regularization.

UV divergences are removed by counter terms generated by the
effective Lagrangian.

Finite pieces of counter terms are fixed such that the subtracted
contributions in physical quantities satisfy the power counting.

Expressions of diagrams and subtraction terms are huge!

Final finite amplitudes respect the power counting and have the
correct analytic behaviour.



We fit the unknown LECs to the phase shifts of the S- and P-waves.

Then we predict the D- and F -wave phase shifts and the threshold
parameters using the determined LECs.

PW analysis of the πN amplitudes of several groups are available:

R. Koch and E. Pietarinen, Nucl. Phys. A 336, 331 (1980).
R. Koch, Nucl. Phys. A 448, 707 (1986).

E. Matsinos, W. S. Woolcock, G. C. Oades, G. Rasche and A. Gashi, Nucl.
Phys. A 778, 95 (2006),

R. A. Arndt, W. J. Briscoe, I. I. Strakovsky and R. L. Workman, Phys. Rev.
C 74, 045205 (2006).

Unfortunately, none of these groups provide uncertainties.

Therefore, we prefer to perform fits to the phase shifts generated by
the recent RS-equation analysis of the πN scattering:

M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, Phys. Rept.
625, 1 (2016).



There are eleven LECs involved in the πN amplitudes in total:
c1, c2, c3, c4, d1 + d2, d3, d5, d14 − d15, gπN , gπN∆ and g1.

We fix gπN coupling at g2
πN/(4π) = 13.69± 0.20,

V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga and D. R. Phillips,
Phys. Lett. B 694, 473 (2011).
V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga and D. R. Phillips,
Nucl. Phys. A 872, 69 (2011).

Fit-I corresponds to the delta-less case and is performed up to
Wmax=1.11 GeV.

Our plots for Fit-I are shown in the next page.
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Figure: Phase shifts of fit-I.
Dots - RS phase shifts; Circles - GWU phase shifts; Red lines - our results.
Red narrow and wide bands - uncertainties propagated from the errors of
LECs and theoretical uncertainties, respectively.

Error bands in P33 and S31 PWs do not cover the RS and GWU data
beyond the fitting range→ theoretical errors underestimated.



Adding the delta degree of freedom should mostly improve the
description of the P33 wave in the ∆-resonance region.

We performed two fits (Fit-II and Fit-III) using 1.2 GeV as Wmax for
the P33 partial wave and 1.11 GeV for the other five PWs.

Fit II is done by adding the LO tree contribution of the
delta-exchange diagrams to the delta-less case and serves only the
purpose of estimating the effect of the loop diagrams with delta.

Unlike previous works,

J. M. Alarcon, J. Martin Camalich and J. A. Oller, Annals Phys. 336, 413
(2013),
Y. H. Chen, D. L. Yao and H. Q. Zheng, Phys. Rev. D 87, 054019 (2013),

we incorporated the complex pole position and obtained better
results with smaller uncertainties, for instance, the large errors in
d14 − d15 are substantially reduced.

Our plots for Fit-II are shown in next page.



-16

-14

-12

-10

-8

-6

-4

-2

 0

 1.08  1.12  1.16  1.2  1.24

S
3
1
  

[D
e

g
re

e
]

Wcm  [GeV]

Fit-II
RS

WI08
-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 1.08  1.12  1.16  1.2  1.24

S
1
1
  

[D
e

g
re

e
]

Wcm  [GeV]

Fit-II
RS

WI08
-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1.08  1.12  1.16  1.2  1.24

P
3
1
  

[D
e

g
re

e
]

Wcm  [GeV]

Fit-II
RS

WI08

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 10

 1.08  1.12  1.16  1.2  1.24

P
1
1
  

[D
e

g
re

e
]

Wcm  [GeV]

Fit-II
RS

WI08

 0

 20

 40

 60

 80

 100

 120

 1.08  1.12  1.16  1.2  1.24

P
3
3
  

[D
e

g
re

e
]

Wcm  [GeV]

Fit-II
RS

WI08

-7

-6

-5

-4

-3

-2

-1

 0

 1.08  1.12  1.16  1.2  1.24

P
1
3
  

[D
e

g
re

e
]

Wcm  [GeV]

Fit-II
RS

WI08

Figure: Phase shifts of Fit-II.
Dots with error bars - RS phase shifts; Circles - GWU phase shifts; The
red line - our results.
The red narrow error bands - the uncertainties propagated from the errors
of LECs.The wide dashed error bands - the theoretical uncertainties.



Fit-III is done with the full contributions of pions, nucleons and deltas
up to NNLO.

The obtained LECs of Fit-III are different from those of Fit-II due to
the inclusion of contributions of loop diagrams involving delta lines.

All the ci and most of the higher order LECs are of natural size.
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Figure: Phase shifts from BChPT with explicit delta - Fit-III.
Dots with error bars - RS phase shifts; Circles - GWU phase shifts. The
red line - the result of Fit III.
The red narrow error bands - uncertainties propagated from the errors of
LECs. The wide dashed error bands - theoretical uncertainties.



Compared to the plots in Fit-II, Fit-III improves the predictions
beyond fitting ranges in most of the partial waves, especially for the
S11 wave.

The larger theoretical error in Fit-III compared to Fit-II is due to the
large contributions of delta-loop diagrams, which are not taken into
account in estimation of the theoretical error of Fit-II.

Imaginary part of hA from Fit-III is small compared to the
corresponding real part Re[hA] and our determination for Re[hA] is
close to the large-Nc prediction.

The obtained g1 for Fit-III is nearly consistent (within the error bars)
with the corresponding large-NC result, |g1| = 9gA/5 ' 2.28.
g1 appears only in the loop contribution, hence a precise
determination of its value is not to be expected.



Table: LECs for various fits. ci and dj are in GeV−1 and GeV−2, resp. Stat.
and syst. uncert. shown in the first and the second brackets, respectively.

Fit-I Fit-II Fit-III
LEC N (i.e. /∆) N+LO ∆ N+∆
c1 −1.22(2)(2) −0.99(2)(1) −1.31(2)(1)
c2 3.58(3)(6) 1.38(3)(1) 0.78(4)(2)
c3 −6.04(2)(9) −2.33(3)(1) −2.55(10)(7)
c4 3.48(1)(3) 1.71(2)(1) 1.20(4)(2)

d1+2 3.25(4)(9) 0.14(4)(3) 4.85(68)(64)
d3 −2.88(8)(14) −0.97(8)(15) −0.62(10)(15)
d5 −0.15(6)(14) 0.39(6)(11) −0.93(11)(15)

d14−15 −6.19(7)(12) −1.08(8)(3) 5.54(2.79)(2.01)
gπN 13.12∗ 13.12∗ 13.12∗

hA − 1.28(1)(1) 1.42(1)(1)−
i 0.16(1)(1)

g1 − − −1.21(46)(39)

χ2/dof 272.0(23.7)
216−8 =
1.31(11)

339.8(27.4)
328−9 =
1.07(9)

373.8(29.9)
328−10 =
1.18(9)



Using the fitted LECs we predict the phase shifts of higher PWs.
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Figure: Phase shifts of the D and F PWs from the delta-less and delta-full
BChPT using the parameters of Fit-I (red) and Fit-III (blue), respectively.
The circles correspond to phase shifts by the GWU group.

Except for D33 channel, our predictions agree qualitatively with the
GWU results and the predictions of the delta-full theory are
somewhat better than those of the delta-less theory.



Scattering lengths and volumes

General form of the effective range expansion is given by

|p|2`+1cot[δI
`±] =

1
aI
`±

+
1
2

r I
`±|p|2 +

∞∑
n=2

v I
n,`±|p|2n ,

where p is the three-momentum of the nucleon in center-of-mass
frame, a is the threshold parameter, r - the effective range, and vn -
the shape parameters.

Results of the threshold parameters corresponding to the three
different fits are presented below, together with the determinations
from the Roy-Steiner equation analysis.



Table: Scattering lengths and volumes. The numbers in brackets
correspond to the errors propagated from the uncertainties of LECs and
the theoretical errors, respectively.

Th. Par. Fit-I Fit-II Fit-III RS

a+
0+ [10−3M−1

π ] −0.6(7)(3.4) −1.1(7)(3.0) −0.5(7)(7.1) −0.9(1.4)

a−0+ [10−3M−1
π ] 85.7(5)(3.3) 85.8(4)(1.1) 85.8(3)(1.0) 85.4(9)

a+
1− [10−3M−3

π ] −49.8(1)(16) −52.5(4)(4.7)−51.0(5)(6.7) −50.9(1.9)

a−1− [10−3M−3
π ] −9.7(3)(9.5) −11.3(3)(3.2)−9.5(2)(1.7) −9.9(1.2)

a+
1+ [10−3M−3

π ] 139.9(1.8)(12)131.0(4)(4.) 131.5(5)(8.8) 131.2(1.7)

a−1+ [10−3M−3
π ] −84.0(6)(4.) −80.3(1)(1.4)−80.4(2)(2.3) −80.3(1.1)



Nucleon sigma term
There are many studies of the πN σ-term, e.g., see
M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, Phys. Rev.
Lett. 115, 092301 (2015),
V. Bernard, N. Kaiser and U.-G. Meißner, Z. Phys. C 60, 111 (1993),
J. M. Alarcon, J. Martin Camalich and J. A. Oller, Phys. Rev. D 85, 051503
(2012).
A high-precision determination of the σπN was done from
RS-equation analysis based on the improved Cheng-Dashen
low-energy theorem and σπN = (59.1± 3.5) MeV was reported in
M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, Phys. Rev.
Lett. 115, 092301 (2015).
The πN sigma term σπN can be obtained from the nucleon mass by
applying the Hellmann-Feynman theorem,

σπN = m̂
∂mN

∂m̂
, m̂ =

(mu + md )

2
,

where mN is the nucleon pole mass.
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Figure: Tree and one-loop diagrams contributing to the self-energies of the
nucleon and the delta resonance up to the order O(p3).

The results for σπN based on the different sets of fitted parameters
are shown in next page.



Table: The πN sigma term in units of MeV. The numbers in brackets
correspond to the errors propagated from the uncertainties of LECs and
the theoretical errors, respectively.

Fit-I Fit-II Fit-III RS
LO 94.3 76.5 101.2 −

NLO −19.5 −19.5 −32.7 −
Sum 74.8(2.2)(11.4) 57.1(1.9)(7.0) 68.5(1.9)(7.6) 59.1(3.5)

Our prediction for Fit-I is marginally consistent with the RS
determination when the large uncertainties are taken into account.

For Fit-II we obtained σπN = 57.1(1.9)(7.0) MeV, which agrees with
the RS determination very well.

Result of Fit-III σπN = 68.5(1.9)(7.6) MeV improves the delta-less
result and within the error it overlaps the value of the RS analysis.



Roper resonance in chiral EFT

Roper resonance is the first nucleon resonance that decays into
Nππ, besides decaying into Nπ.

Despite the fact that the Roper resonance was found a long time ago

L. D. Roper, Phys. Rev. Lett. 12, 340 (1964).

a satisfactory theory of this state is still missing.

First steps in this direction within chiral EFT have been made in

B. Borasoy, P. C. Bruns, U.-G. Meißner and R. Lewis, Phys. Lett. B 641,
294 (2006).
D. Djukanovic, J.Gegelia, S. Scherer, Phys. Lett. B 690, 123 (2010).
B. Long and U. van Kolck, Nucl. Phys. A 870-871, 72 (2011).
T. Bauer, J.Gegelia, S. Scherer, Phys. Lett. B 715, 234 (2012).
E. Epelbaum, J.Gegelia, U.-G. Meißner and D. L. Yao, Eur. Phys. J. C 75,
no. 10, 499 (2015).



We present the calculation of the width of the Roper resonance at
leading two-loop order in BChPT of pions, nucleons, the delta and
Roper resonances.

J.Gegelia, U.-G. Meißner and D. L. Yao, “The width of the Roper resonance
in baryon chiral perturbation theory,” Phys. Lett. B 760, 736 (2016).



The width of the Roper resonance

The dressed propagator of the Roper resonance can be written as

i SR(p) =
i

p/ −mR0 − ΣR(p/)
,

where −i ΣR(p/) is the self-energy.

The pole of the dressed propagator SR is obtained by solving

S−1
R (z) ≡ z −mR0 − ΣR(z) = 0 .

We define the physical mass and the width of the Roper resonance
by parameterizing the pole as

z = mR − i
ΓR

2
.



Topologies of the one- and two-loop Roper self-energy diagrams
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Figure: One and two-loop self-energy diagrams of the Roper resonance.
The dashed and thick solid lines represent the pions and the Roper
resonances, respectively. The thin solid lines in the loops stand for either
nucleons, Roper or delta resonances.



We parameterize the pole as

z = m2 + ~δz1 + ~2δz2 +O(~3),

where m2 = m0
R + 4cR

1 M2, with m0
R the Roper mass in the chiral limit

and write the self-energy as an expansion:

ΣR = ~Σ1 + ~2Σ2 +O(~3) .

By expanding the equation for z in powers of ~, we get

~δz1 + ~2δz2 − ~Σ1(m2)− ~2δz1Σ′1(m2)− ~2Σ2(m2) +O(~3) = 0 .

Solving order by order we obtain

δz1 = Σ1(m2),

δz2 = Σ1(m2) Σ′1(m2) + Σ2(m2).



The width takes the form

ΓR = ~ 2i Im [Σ1(m2)]

+ ~2 2i
{

Im [Σ1(m2)] Re
[
Σ′1(m2)

]
+ Re [Σ1(m2)] Im

[
Σ′1(m2)

]}
+ ~2 2i Im [Σ2(m2)] +O(~3).

It turns out that the contribution of the second term is O(δ6).

To calculate the contributions of the first and third terms we use the
Cutkosky cutting rules.

Only contributions obtained by cutting the lines, corresponding to
stable particles, are needed.
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Figure: Diagrams contribution to the decay R → Nπ up to leading one-loop
order. Dashed, solid, double and thick solid lines correspond to pions,
nucleons, deltas and Roper resonances, respectively. The numbers in the
circles give the chiral orders of the vertices.



The R(p)→ N(p′)πa(q) decay width reads

ΓR→πN =
λ1/2(m2

R,m
2
N ,M

2)

16πm3
R

|M1|2 ,

with λ(x , y , z) = (x − y − z)2 − 4yz andM1 the corresponding
decay amplitude.



The decay width corresponding to the ππN final state is given by:

ΓR→ππN =
1

32m3
R(2π)3

∫ (mR−mN )2

4M2
π

ds1

∫ s2+

s2−

ds2 |M|2 ,

whereM is the R(p)→ N(p′)πa(q1)πb(q2) decay amplitude and

s2± =
m2

R + m2
N + 2M2

π − s1

2
± 1

2s1
λ1/2(s1,m2

R,m
2
N)λ1/2(s1,M2

π ,M
2
π) .

We consider mR −mN ∼ 400 MeV as a small parameter of the order
δ1 and count Mπ ∼ δ2.

As s1 varies from 4M2
π to (mR −mN)2, we assign the order δ2 to it.

We also count mR −m∆ ∼ δ2.



LO tree diagrams contributing to the R → ππN decay:

(a)

1 1 1 1 1 1

(b) (c)

Figure: Tree diagrams contributing to the R → ππN decay. Crossed
diagrams are not shown. Dashed, solid, double and thick solid lines
correspond to pions, nucleons, deltas and Roper resonances, respectively.
The numbers in the circles give the chiral orders of the vertices.

The delta propagators in these diagrams are dressed. The non-pole
parts are of higher orders and therefore can be dropped.

The contributions of the loop diagrams are suppressed by additional
powers of δ so that they do not contribute at order δ5.



Thus, the contributions of the one- and two-loop self-energy
diagrams in the width of the Roper resonance at order δ5 sum up to

ΓR = ΓR→πN + ΓR→ππN .



Numerical results
We use the following standard values of the parameters from PDG

Mπ = 139 MeV, mN = 939 MeV, m∆ = 1210± 1 MeV,

Γ∆ = 100± 2 MeV, mR = 1365± 15 MeV,Fπ = 92.2 MeV,

and obtain

ΓR→πN = 550(57.7) g2
πNR MeV,

ΓR→ππN =

[
1.49(0.58) g2

A g2
πNR − 2.76(1.07) gA g2

πNR gR

+ 1.48(0.59) g2
πNR g2

R + 2.96(0.94) gA gπNR hhR

− 3.79(1.37) gπNR gR hhR + 9.93(5.45) h2h2
R

]
MeV.

Further, we substitute gA = 1.27 and h = 1.42± 0.02.
The latter value is taken from

D. L. Yao, et.al. JHEP 1605, 038 (2016).



We pin down gπNR by reproducing

ΓR→πN = (123.5± 19.0) MeV

from PDG, which yields

gπNR = ±(0.47± 0.11).

Following
S. R. Beane and U. van Kolck, J. Phys. G 31, 921 (2005)
we assume gR = gA and hR = h and obtain:

ΓR→ππN =
[
0.53(32)− 0.98(60) + 0.53(32)± 3.57(1.41)

∓ 4.57(1.97) + 40.4(22.2)
]

MeV = 40.5(22.3) MeV.

The largest contribution comes from the decay diagram with
intermediate ∆ state.



Further, using the approach of

E. Epelbaum, H. Krebs and U.-G. Meißner, Eur. Phys. J. A 51, no. 5, 53
(2015)

we estimate the theoretical error due to the omitting the higher order
contributions and obtain

ΓR→ππN = (40.5± 22.3± 16.8) MeV,

which is consistent with

ΓππN = (66.5± 9.5) MeV

quoted by PDG.



Width of the ∆-resonance up to order p5

J.Gegelia, U.-G.Meißner, D.Siemens, D.L.Yao, Phys. Lett. B 763, 1 (2016).

Dressed ∆-propagator in d space-time dimensions:

−iDµν(p) =

[
gµν − γµγν

d − 1
− pµγν − γµpν

(d − 1)m0
∆

− d − 2
(d − 1)(m0

∆)2
pµpν

]

× −i
p/ −m0

∆ − Σ1 − p/Σ6
+ pole free terms ,

where the self-energy of the ∆-resonance is parameterised as:

Σµν = Σ1(p2) gµν + Σ2(p2) γµγν + Σ3(p2) pµγν

+ Σ4(p2) γµpν + Σ5(p2) pµpν + Σ6(p2) p/gµν + Σ7(p2) p/γµγν

+ Σ8(p2) p/pµγν + Σ9(p2) p/γµpν + Σ10(p2) p/pµpν .



Pole position z of the ∆-propagator can be found by solving

z −m0
∆ − Σ1(z2)− z Σ6(z2) ≡ z −m0

∆ − Σ(z) = 0 .

Pole mass and the width are defined by parameterizing z as

z = m∆ − i
Γ∆

2
.



We calculate z perturbatively order by order in ~ (loop expansion).
For that purpose we write:

Σ = ~Σ(1) + ~2Σ(2) +O(~3) ,

and obtain the following expression for the width

Γ∆ = ~2i Im
[
Σ(1)(m∆)

]
+ ~2 2i

{
Im
[
Σ(1)(m∆)

]
Re
[
Σ′(1)(m∆)

]
+ Re

[
Σ(1)(m∆)

]
Im
[
Σ′(1)(m∆)

]}
+ ~22iIm

[
Σ(2)(m∆)

]
+O(~3).

For Σ(1) we used the corresponding explicit expressions.

For the two-loop contribution we use the Cutkosky cutting rules, that
is we relate it to A∆→πN amplitude via

Γ∆ =

[
(m∆ + mN)2 −M2

π

] [(
m2

∆ −m2
N −M2

π

)2 − 4M2
πm2

N

]3/2

192πm5
∆

× |A∆→πN |2 .



The tree and one-loop diagrams contributing to the ∆→ πN decay
up to order p3:
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Calculating one- and two-loop contributions in the delta width we
extracted hA from the experimental value of the delta width for a
given value of the leading π∆ coupling constant g1:

Γ∆=53.91 h2
A + 0.87g2

1h2
A − 3.31g1h2

A − 0.99 h4
A .

Substituting Γ∆ = 100± 2 MeV from the PDG we extract hA as a
function of g1.

The obtained result is plotted in next page.

Such a correlation between πN∆ and π∆ couplings exists in the
large NC limit but, as far as we know, we obtained it for the first time
for the real world with NC = 3.



Figure: hA as a function of g1. The central line corresponds to
Γ∆ = 100 MeV, while the band is obtained by varying Γ∆ ∼ 98− 102 MeV.

The dot-dashed lines correspond to delta widths indicated by their values.

The blue dot with error bars represents the real part of the coupling fitted
to πN scattering, the purple dots stand for the leading order πN∆ coupling
in the large-Nc limit and the horizontal dashed line with cyan band
corresponds to the value (with error represented by the band) from
V. Bernard, E. Epelbaum, H. Krebs and U.-G. Meißner, Phys. Rev. D 87,
no. 5, 054032 (2013).



Summary

I Pion-nucleon scattering in BChPT with delta:
I One-loop full order p3 calculation in a chiral EFT with pions,

nucleons and delta resonances.
I Fit of unknown parameters to S and P waves.
I Reasonable description of phase shifts and threshold

parameters.

I Width of the Roper resonance calculated up to NLO of BChPT:
I One of the three unknown couplings we fix by reproducing the

PDG value for ΓR→πN .
I Assuming that the remaining two couplings of the Roper

interaction take values equal to those of the nucleon, we obtain
the result for ΓR→ππN consistent with the PDG value.

I To improve the accuracy of our calculation, three-loop
self-energy diagrams need to be calculated.

I Width of the delta resonance.
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