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OUTLINE

o Experimental introduction.

o Early phenomenological analyses.
Deep or shallow?
Kaon condensation in neutron stars? (1995)
Conflicts with more fundamental approaches (2000).

o Going sub-threshold systematically. (2011)
Several models for chiral amplitudes.
Mixed chiral and phenomenological approaches.
Ambiguities.

o Additional data: single-nucleon absorption fractions.
Ambiguities removed. (2017)
Some consequences.

o Concluding remarks.



Schematics of exotic-atom energy levels
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Comments on experiments

@ Results from CERN, Argonne, Rutherford Lab., BNL
o Use weighted averages
o Good accuracies for shifts and widths

@ Reasonable accuracies for yields (= upper level widths)

Puzzles with early data for H and He removed by new precision
experiments at KEK and Frascati between 1997 and 2007.



The simplest optical potential:

2Von(r) = —ar(1+ 27 Ly (baln(r) + pp(P)] + balonlr) — pp(P)]}

pn and pp, are the neutron and proton density distributions, M is
the mass of the nucleon, p is the reduced mass.

Global fits to kaonic atom data usually cannot determine by.
Good fits (x?=129 for 65 points) lead to

bo = 0.63 £0.06 + i (0.89 & 0.05) fm,
which in the impulse approximation is minus the scattering
amplitude at threshold.
From phase-shifts bg = —0.15 + i 0.62 fm.

The low-density limit is not respected.



Replace by — by + Bo[p(r)/po]® and vary By and «.
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Consequences of very deep real potential:

o Is it reliable?

@ Possible kaon condensation at p = 3pg in neutron stars.
Much interest in 1995; currently of not much interest.

@ Possibility of strongly bound anti kaons in nuclei. Expect
huge widths. Still somewhat controversial.



Early attempts to use ‘chiral’ amplitudes

Ramos & Oset, NPA 671 (2000) 481
Baca et al., NPA 673 (2000) 335
Cieply et al.,NPA 696 (2001) 173
@ Poor agreement with data (x?(65)=300)
@ Reduced x? to 200 with typical 50% rescaling
@ x?=130 by adding a tp term with NEGATIVE absorption

Something is missing!



Early example of chiral amplitutes
Kaiser, Siegel, Weise, NPA 594 (1995) 325
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Reminder of ‘in-medium kinematics’

Adopt the Mandelstam variable s = (Ex— + En)? — (k- + Pn)?
as the argument transforming free-space to in-medium K~ N
amplitudes.

In the kaonic-atom c.m. frame the average of (py— + pn)? is
22 | A-222
the average of pyy + “7°p,-

thus reducing further the relevant energy.



Reminder of ‘in-medium kinematics’

Adopt the Mandelstam variable s = (Ex— + En)? — (Px— + pn)? as the
argument transforming free-space to in-medium K~ N amplitudes.
dv/s = /s — Eqn, Esn = mg- + my, then to first order in B/E;y, one gets

0v/s = —Bnp/p — BulTu(p/P)*"> + Bk-p/pol + B~ [Re Vi + Ve(p/po)*?],
Bn = mn/(my + my-), Bx- = mk-/(my + mg-), po = 0.17 fm~>.

Average binding energy By = 8.5 MeV, Ty=23 MeV (Fermi gas model).

The specific p/po and p/p forms ensure that /s — 0 when p — 0

Solving by iterations, /s and hence amplitudes become functions of p,
essentially averaging over subthreshold energies.

Accepting ‘Minimal Substitution’ (MS), V,(r) is subtracted from /s,
(as supported by analyses of pion-nucleus experiments).



For attractive potentials the energy +/s is below threshold within
the nuclear medium.

In addition there are corrections due to Pauli correlations.

The algorithm performs averaging over subthreshold energies.

PLB 702 (2011) 402; PRC 84 (2011) 045206; NPA 899 (2013) 60;
EPJ Web of Conferences 81 (2014) 01018; NPA 959 (2017);
(partial list).



Six chiral K~ N models constrained by fits to near-threshold data,

Real K'p amplitude (fm)

including the SIDDHARTA result for K~H at threshold
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Six chiral K~ N models constrained by fits to near-threshold data,
including the SIDDHARTA result for K~H at threshold
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x2 for 65 kaonic atoms data points from optical potentials based
only on single-nucleon amplitudes.

model

B2

B4

M1 M2

P

KM

YA

Xx°(65)

1174

2358

2544 3548

2300

1806

2116

X2 for 18 high quality data points (P, S, Cl, Cu, Ag, Pb)

model B2 B4 M1 M2 P KM | YA
X2(18) 364 733 049 1232 480 449 | 538
Not fits!



Fits to 65 kaonic atoms data points when single-nucleon amplitudes are
supplemented by a B(p/po)® term with fixed o compatible with its

best-fit value. B in units of fm.

model B2 B4 M1 M2 P KM YA

o 0.3 0.3 0.3 1.0 1.0 1.0 1.0
ReB 2.440.2 3.140.1 0.3+0.1 2.140.2 —1.31+0.2 —0.9£0.2 -2.0£ 0.2
ImB 0.84+0.1 0.8+0.1 0.8+0.1 1.240.2 1.5+0.2 1.4+0.2 0.65 +0.2

X2(65) 111 105 121 109 125 123 150

Is it necessary to go subthreshold?
Example for KM, when §,/s=0:
a =10 ReB=-1.840.1, ImB = —1.140.1, x?(65) =139

Negative ImB and/or significantly larger x? obtained for all seven models
when taken on threshold.
Similar problems when ignoring Pauli correlations.



o Except for YA, all models lead to acceptable y? values of
110 to 120 for 65 points.

o The additional potential has a p'3 to p>® dependence.
Could represent multi-nucleon processes.

@ Unable to distinguish between the six models!

Ambiguities below threshold. Need additional information.



Fraction of multinucleon absorptions at rest from
Bubble-Chamber experiments

K +N—=Y+n
K-+N+N-—=Y+N

0.26+0.03 on a mixture of C, F and Br (Berkeley, 1968)
0.2840.03 on Ne (BNL, 1971)

0.19+0.03 on C (CERN, 1977)

Results from nuclear emulsions quote larger uncertainties.

We therefore adopt as a best estimate of experimental K~
multinucleon absorption-at-rest fraction an average value of
0.2540.05 for C and heavier nuclei.

Apply fraction of single-nucleon absorptions 0.75+0.05 as an
additional constraint.



The level width T is obtained from the eigenvalue Ex— — il /2
when solving the Klein-Gordon equation with an optical potential,
(Ex- = mg— — Bi-). It is also related to the imaginary part of
the potential by the overlap integral of Im Vi~ and [|?,

[Im V- |[¢]? dF
JI1 = (Bk- + Vo) / k] |? dF
where By, Vo and puk are the K~ binding energy, Coulomb

potential and reduced mass, respectively, and 1 is the K~ wave
function of the particular state concerned.

r=-2



The level width I is obtained from the eigenvalue Ex— — il /2
when solving the Klein-Gordon equation with an optical potential,
(Ex- = mg—- — Bi-). It is also related to the imaginary part of
the potential by the overlap integral of Im Vi~ and [1/|?,

[Im Vi |[¢]? dF
JI1 = (Bk- + Vo) /pk] [¥? dF

where Bx-, Vo and uk are the K~ binding energy, Coulomb
potential and reduced mass, respectively, and 1 is the K~ wave
function of the particular state concerned.

When the best fit optical potential is V}(<1,)+V(2), the sum of a

M =-2

single-nucleon part and a multinucleon part, it is straight forward
to calculate the fraction of single-nucleon absorptions, separately
for any nucleus and for any specific kaonic atom state.



Kaonic atoms overlaps for ‘lower’ (solid curves) and ‘upper’
(dashed curve) states.
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Very similar behavior along the Periodic Table.




Fraction of single-nucleon absorption for amplitudes P and KM.
Solid circles for lower states, open squares for upper states.
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Fraction of single-nucleon absorption for amplitudes P and KM.

Solid circles for lower states, open squares for upper states.
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Fraction of single-nucleon absorption for the other 5 amplitudes.
Solid circles for lower states, open squares for upper states.
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2.5

Ni*K™ 4f overlaps

20 1NImV \ ———fullIm Vv

10°|rg[’Im V (MeV/fm)

r (fm)

I(exp)=1.0340.12 keV, (KM+mN)=0.94 keV, I'(M14+mN)=0.90 keV
D



-50 r

-90 r

Real potential (MeV)

-110 -

-130 r

_150 Il Il Il Il
0 0.2 0.4 0.6 0.8 1

p/p,

Arbitrary model-dependence above 25% of central density
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Could be observed by /-selective reactions.



Absorption causes repulsion of the atomic wave function.
25 ‘

Ni*K ImV overlaps, KM+mN potential
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Unlikely to provide information beyond ‘normal’ kaonic atoms.



Summary

@ Good global fits with mixed chiral (IN) + phenomenological
multi-nucleon amplitudes within sub-threshold kinematics.

@ Fractions of single-nucleon absorption favor the P and the KM
models.

@ All seven models predict these fractions to depend very little
on nuclear species and atomic state.

@ Real potential not known above 25% of central density.
Unable to answer ‘deep or shallow?"

@ Imaginary potential known up to 50% of central density.
Could constrain theories of multi-nucleon absorption.

@ Deeply (Coulomb bound) kaonic atom states are well-defined
but unlikely to provide new information.

@ Deep strongly bound nuclear states are too broad to be
well-defined.



Thank you for your attention!

Nucl. Phys. A 959 (2017) 66-82.



Six chiral K~ N models constrained by fits to near-threshold data,
including the SIDDHARTA result for K~H at threshold.

Real K'p amplitude (fm)
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Six chiral K~ N models constrained by fits to near-threshold data,
including the SIDDHARTA result for K~H at threshold.
The YA is a non-chiral energy-independent potential.
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