Heavy mesons in the quark model

15th International Workshop on Mesons Physics

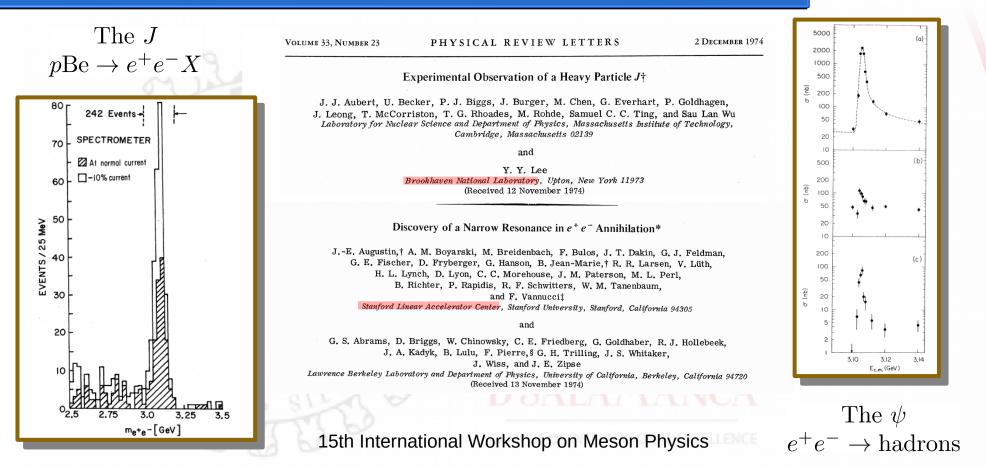
Meson 2018

D.R. Entem

In collaboration with:

F. Fernández P.G. Ortega J. Segovia

Outline



- 1974 The November revolution
- The naive quark model phenomenological potential models
- 2003 the discovery of the X(3872)
- Open charm and bottom meson dynamics the Chiral Quark Model
- HQSS and HFS in the naive quark model and in the unquenched quark model
- The 3.9 GeV region discrepancies from the naive quark model
- States above threshold New resonances measured by LHCb

The November revolution

The November revolution

- The two particles were seen as the same
- The GIM mechanism (1970) required a new quark to explain the suppression of flavor-changing weak decays that were not observed, the c quark
 The Υ(1S) was discovered at Fermilab in p(Cu, Pt) → μ⁺μ⁻X on the dimuon distribution at 9.5 GeV on 1977.
 Very soon after the Cornell model was developed Phys. Rev. D 17, 3090 (1978)

VNiVERSiDAD DSALAMANCA

The Cornell model

• Basic assumptions: basic interactions with SU(3) color gauge symmetry with flavor only broken by the quark masses.

• Heavy quarks are treated non-relativistically

• Interquark interaction assumed as

$$V(r) = -\frac{\kappa}{r} + \frac{r}{a^2}$$

- Flavor independent
- Spin independent HQSS symmetry

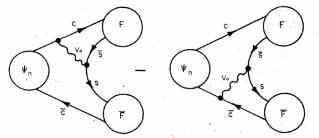


FIG. 6. This diagram depicts the decay of a $c\overline{c}$ state ψ_n into $F\overline{F}$. There are two terms, corresponding to $s\overline{s}$ creation by c or \overline{c} . The formula corresponding to this is Eq. (3.33).

- Coupling to two meson states is considered
- The linear term dominates over the coulomb (small strong coupling constant α_s)

The Cornell model

<u>21</u> CHARMONIUM: COMPARISON WITH EXPERIMENT TABLE II. $c\bar{c}$ bound states in naive model, and their properties. Parameters used are m_c = 1.84 GeV, a = 2.34 GeV⁻¹, and $\kappa = 0.52$. $\left\langle \frac{v^2}{c^2} \right\rangle$ Γ_{ee} (keV)^b State Mass (GeV) 3.095^a 4.8 1S0.20 1P 3.522^{a} 0.20 3.684 a 2S2.1 0.24 1D3.81 0.23 4.11 35 1.5 0.30 2D4.19 0.29 4S4.461.10.355S4.79 0.8 0.40 ^a Input.

^b Correction factor $(1 - 4\kappa/\pi) = 0.341$ is included.

^c See Ref. 18.

^d See Ref. 20.

15th International Workshop on Meson Physics

 $\langle r^2 \rangle^{1/2}$ (fm)

0.47

0.74

0,96

1.0

1.3

1.35

1.7

2.0

Candidate

 $\psi(3095)$

 $\chi_{0,1,2}(3522 \pm 5)$

 $\psi'(3684)$

 $\psi'(3772)^{c}$

 $\psi(4028)$ $\psi(4160)^{d}$

 $\psi(4414)$

207

The Cornell model

<u>21</u> ^a Input.

CHARMONIUM: COMPARISON WITH EXPERIMENT

209

TABLE IV. Naive-model $b\overline{b}$ bound states and their properties. Parameters used are $m_b = 5.17 \text{ GeV}$, $a = 2.34 \text{ GeV}^{-1}$, and $\kappa = 0.52$.

State	Eigenvalue (MeV)	Mass (GeV)	$\Gamma_{ee}^{\ \ b}$ (keV)	$\left\langle \frac{v^2}{c^2} \right\rangle$	$\langle r^2 \rangle^{1/2}$ (fm)
1 <i>S</i>	0	9.46 ^a	1.25	0.096	0.20
1P	498	9.96		0.065	0.39
25	591	10.05	0.45	0.076	0.48
1 <i>D</i>	747	10.20		0.067	0.53
2P	852	10.31		0.076	0.64
35	936	10.40	0.31	0.085	0.72
2D	1040	10.50		0.080	0.75
3P	1135	10.60			
4 <i>S</i>	1213	10.67	0.25	0.097	0.92
3D	1292	10.75			
5S	1455	10.92			
6S	1675	11.14			

^b See text for how these numbers are obtained.

PDG 1978

		mesons		$b\bar{b}$	-)]
($J/\psi(3100)$	3097 ± 1	1^{-} 0 ⁺	$\Upsilon(9460) \ \Upsilon(10020)$	1
	$\begin{array}{c} \chi(3415)\\ p_c \text{ or } \chi(3510) \end{array}$	$\begin{array}{c} 3414 \pm 4 \\ 3507 \pm 4 \end{array}$	0	1(10020)	
	$\chi(3550)$	3551 ± 5			
	$\psi(3685) \ \psi(3770)$	$3685 \pm 1 \\ 3768 \pm 3$	1- 1-		
	$\psi(3770) \ \psi(4030)$	$\begin{array}{c} 3708 \pm 3 \\ 4030 \pm 6 \end{array}$	1^{-1}		
	$\psi(4160)$	4159 ± 20	1-		
٤.	$\psi(4415)$	4415 ± 6	1-	VNiVE	

$b\overline{b}$	mesons	
$\Upsilon(9460)$	9458 ± 6	1-
$\Upsilon(10020)$	10016 ± 14	1^{-}

PDG 2003

 $c\overline{c}$ mesons

$\eta_c(1S)$	2979.2 ± 1.3	0-+
$J/\psi(1S)$	3096.87 ± 0.04	1
$\chi_{c0}(1P)$	3415.3 ± 0.4	0^{++}
$\chi_{c1}(1P)$	3510.51 ± 0.12	1++
$\chi_{c2}(1P)$	3556.18 ± 0.13	2^{++}
$h_c(1P)$	3526.14 ± 0.24	ŝ
$\eta_c(2S)$	3654 ± 10	0^{-+}
$\psi(2S)$	3685.96 ± 0.09	1 5
$\psi(3770)$	3769.9 ± 2.5	1 5
$\psi(3836)$	3836 ± 13	2
$\psi(4040)$	4040 ± 10	1 🕄
$\psi(4160)$	4159 ± 20	1
$\psi(4415)$	4415 ± 6	1

	$b\overline{b}$ mesons		Cornell
$\eta_b(1S)$	9300 ± 20	0^{-+}	
$\Upsilon(1S)$	9460.30 ± 0.26	1	
$\chi_{b0}(1P)$	9859.9 ± 1.0	0^{++}	
$\chi_{b1}(1P)$	9892.7 ± 0.6	1^{++}	$1P9.96{ m GeV}$
$\chi_{b2}(1P)$	9912.6 ± 0.5	2^{++}	
$\Upsilon(2S)$	10023.26 ± 0.31	1	
$\chi_{b0}(2P)$	10232.1 ± 0.6	0^{++}	
$\chi_{b1}(2P)$	10255.2 ± 0.5	1^{++}	$2P10.31{ m GeV}$
$\chi_{b2}(2P)$	10268.5 ± 0.4	2^{++}	
$\Upsilon(3S)$	10355.2 ± 0.5	1	$3S10.4{ m GeV}$
$\Upsilon(4S)$	10580 ± 3.5	1	$4S10.67{ m GeV}$
$\Upsilon(10860)$	10865 ± 8	1	$5S10.92{ m GeV}$
$\Upsilon(11020)$	11019 ± 8	1	

PDG 2017

$n^{2s+1}\ell_J J^{PC}$	I = 0 $c\overline{c}$	I = 0 $b\overline{b}$		$l = 0$ $c\overline{s}; \overline{c}s$	$ \begin{array}{c} I = \frac{1}{2} \\ b\overline{u}, b\overline{d}; \overline{b}u, \overline{b}d \end{array} $	I = 0 $b\overline{s}; \overline{b}s$	I = 0 $b\overline{c}; \overline{b}c$	
$1 {}^{1}S_0 = 0^{-+}$	$\eta_c(1S)$	$\eta_b(1S)$	D	D_s^{\pm}	В	B_s^0	B_c^{\pm}	Chai
$1 {}^{3}S_{1}$ 1	$J/\psi(1S)$	$\Upsilon(1S)$	<i>D</i> *	$D_s^{*\pm}$	<i>B</i> *	B_s^*		
$1 {}^{1}P_{1} = 1^{+-}$	$h_c(1P)$	$h_b(1P)$	$D_1(2420)$	$D_{s1}(2536)^\pm$	$B_1(5721)$	$B_{s1}(5830)^0$		Bott
$1^{3}P_{0} = 0^{++}$	$\chi_{c0}(1P)$	$\chi_{b0}(1P)$	$D_0^*(2400)$	$D^*_{s0}(2317)^{\pm \dagger}$				
1 ³ P ₁ 1 ⁺⁺	$\chi_{c1}(1P)$	$\chi_{b1}(1P)$	$D_1(2430)$	$D_{s1}(2460)^{\pm\dagger}$				1
$1 {}^{3}P_{2} \qquad 2^{++}$	$\chi_{c2}(1P)$	$\chi_{b2}(1P)$	$D_2^*(2460)$	$D^*_{s2}(2573)^{\pm}$	$B_{2}^{*}(5747)$	$B^*_{s2}(5840)^0$		1
1 ³ D ₁ 1	$\psi(3770)$			$D_{s1}^{*}(2860)^{\pm \ddagger}$				
1 ³ D ₃ 3			$D_3^*(2750)^{\pm}$	$D_{s3}^{*}(2860)^{\pm}$				
$2 {}^{1}S_{0} = 0^{-+}$	$\eta_c(2S)$	$\eta_b(2S)$	D(2550)				$B_c(2S)^{\pm}$	
$2^{3}S_{1}$ 1	$\psi(2S)$	$\Upsilon(2S)$		$D^*_{s1}(2700)^{\pm \ddagger}$				
3 ³ S ₁ 1		$\Upsilon(3S)$						-
$4^{3}S_{1}$ 1		$\Upsilon(4S)$						1
$2 P_1 1^{+-}$		$h_b(2P)$						ERSi
$2 {}^{3}P_{0,1,2} 0^{++}, 1^{++}, 2^{+}$	+ $\chi_{c2}(2P)$	$\chi_{b0,1,2}(2P)$						LIGI
$3 {}^{3}P_{0,1,2} 0^{++}, 1^{++}, 2^{+}$	-+	$\chi_b(3P)$						AMA
$1 {}^{3}D_{2} 2^{}$		$\Upsilon(1D)$						I'LL I'LL

Charmonium: A total of 37 states Bottomonium: A total of 20 states

Assignment	J^{PC}	nL	CQM	Godfrey-Isgur	Ebert <i>et al.</i>	Exp.
$\eta_c(1S)$	0^{-+}	1S	2990	2970	2981	2981.0 ± 1.1
$\eta_c(2S)$		2S	3643	3620	3635	3638.9 ± 1.3
		3S	4054	4060	3989	
$\chi_{c0}(1P)$	0^{++}	1P	3452	3440	3413	3414.75 ± 0.31
X(3915)		2P	3909	3920	3870	$3915 \pm 3 \pm 2$
		3P	4242		4301	
$h_c(1P)$	1^{+-}	1P	3515	3520	3525	3525.41 ± 0.16
		2P	3956	3960	3926	
		3P	4278		4337	

D JALAMANCA

Assignment	J^{PC}	nL	CQM	Godfrey-Isgur	Ebert <i>et al.</i>	Exp.
J/ψ	1	1S	3096	3100	3096	3096.916 ± 0.011
$\psi(2S)$		2S	3703	3680	3685	3686.108 ± 0.018
$\psi(3770)$		1D	3796	3820	3783	3778.1 ± 1.2
$\psi(4040)$		3S	4097	4100	4039	4039 ± 1
$\psi(4160)$		2D	4153	4190	4150	4153 ± 3
X(4360)		4S	4389	4450	4427	$4361 \pm 9 \pm 9$
$\psi(4415)$		3D	4426	4520	4507	4421 ± 4
X(4630)		5S	4614		4837	4634_{-7-8}^{+8+5}
X(4660)		4D	4641		4857	$4664 \pm 11 \pm 5$

 $D^{(*)}\bar{D}^{(*)} \sim 7\%$ $D\bar{D}_1 \sim 48\%$ $D\bar{D}_2^* \sim 25\%$

DOFILITING

Assignment	J^{PC}	nL	CQM	Godfrey-Isgur	Ebert <i>et al.</i>	Exp.
$\chi_{c1}(1P)$	1^{++}	1P	3504	3510	3511	3510.66 ± 0.07
		2P	3947	3950	3906	
		3P	4272		4319	
$\eta_{c2}(1D)$	2^{-+}	1D	3812	3840	3807	
		2D	4166	4210	4196	
		3D	4437		4549	
$\chi_{c2}(1P)$	2^{++}	1P	3532	3550	3555	3556.20 ± 0.09
Z(3930)		2P	3969	3980	3949	$3929 \pm 5 \pm 2$
		1F	4043	4010	4041	
X(3823)	$2^{}$	1D	3810	3840	3795	$3823.1 \pm 1.8 \pm 0.7$

DOALANIAINCA

Table 6. Branching fraction for the decay $\psi(2S) \rightarrow \gamma(\gamma J/\psi)_{\chi_{cJ}}$. Experimental data are from Ref. 43.

Mode	$\Gamma_{\rm The.}$	$\Gamma_{\rm Exp.}$
$\gamma(\gamma J/\psi)_{\chi_{c0}}$	0.156	$0.125 \pm 0.007 \pm 0.013$
$\gamma (\gamma J/\psi)_{\chi_{c1}}$	4.423	$3.56 \pm 0.03 \pm 0.12$
$\gamma(\gamma J/\psi)_{\chi_{c2}}$	2.099	$1.95 \pm 0.02 \pm 0.07$

SALAMANCA

Bottomonium

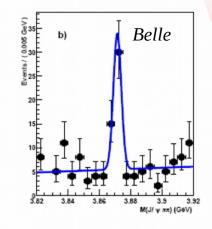
	- DC				=		-DC			
State	J^{PC}	nL	The. (MeV)	Exp. (MeV)	_	State	J^{PC}	nL	The. (MeV)	Exp. (MeV)
η_b	0^{-+}	1S	9455	9398.0 ± 3.2		Υ	$1^{}$	1S	9502	9460.30 ± 0.26
		2S	9990	$9999.0 \pm 3.5^{+2.8}_{-1.9}$				2S	10015	10023.26 ± 0.31
		3S	10330	-				1D	10117	-
χ_{b0}	0^{++}	1P	9855	$9859.44 \pm 0.42 \pm 0.31$				3S	10349	10355.2 ± 0.5
		2P	10221	$10232.5 \pm 0.4 \pm 0.5$				2D	10414	-
		3P	10500	-				4S	10607	10579.4 ± 1.2
h_b	1^{+-}	1P	9879	9899.3 ± 1.0				3D	10653	-
		2P	10240	$10259.8 \pm 0.5 \pm 1.1$				5S	10818	10876 ± 11
		3P	10516	-				4D	10853	-
χ_{b1}	1^{++}	1P	9874	$9892.78 \pm 0.26 \pm 0.31$				6S	10995	11019 ± 8
		2P	10236	$10255.46 \pm 0.22 \pm 0.50$				5D	11023	-
		3P	10513	$1513.42 \pm 0.41 \pm 0.18$		Υ_2	$2^{}$	1D	10122	10163.7 ± 1.4
χ_{b2}	2^{++}	1P	9886	$9912.21 \pm 0.26 \pm 0.31$				2D	10418	-
		2P	10246	$10268.65 \pm 0.22 \pm 0.50$				3D	10657	-
		1F	10315	-		h_{b3}	3^{+-}	1F	10322	-
		3P	10521	$10524.02 \pm 0.57 \pm 0.18$				2F	10573	-
		2F	10569	-	_			3F	10785	-

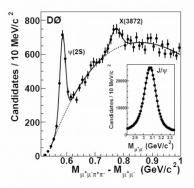
Bottomonium

Initial state	Final state	$\Gamma_{ m The.}\ ({ m keV})$	$\mathcal{B}_{\mathrm{The.}}$ $(imes 10^{-2})$	$\mathcal{B}_{ ext{Exp.}} \ (imes 10^{-2})$	Initial state	Final state	$\Gamma_{ m The.}\ ({ m keV})$	$\mathcal{B}_{ ext{The.}}\ (imes 10^{-2})$	${\mathcal B}_{ m Exp.}\ (imes 10^{-2})$
$\Upsilon(1S)$	e^+e^-	0.71	1.31	2.38 ± 0.11	$\Upsilon(3S)$	e^+e^-	0.27	1.33	2.18 ± 0.20
	3g	41.63	77.06	81.7 ± 0.7		3g	18.76	92.32	35.7 ± 2.6
	γgg	0.79	1.46	2.2 ± 0.6		γgg	0.36	1.77	0.97 ± 0.18
	3γ	$3.44 imes 10^{-6}$	$6.37 imes 10^{-6}$	-		3γ	$1.55 imes 10^{-6}$	$7.63 imes10^{-6}$	-
	$\gamma \eta_b(1S)$	$9.34 imes10^{-3}$	$1.73 imes 10^{-2}$	-		$\gamma \chi_{b0}(1P)$	0.15	0.74	0.27 ± 0.04
$\Upsilon(2S)$	e^+e^-	0.37	1.16	1.91 ± 0.16		$\gamma \chi_{b1}(1P)$	0.16	0.79	0.09 ± 0.05
	3g	24.25	75.83	58.8 ± 1.2		$\gamma \chi_{b2}(1P)$	8.27×10^{-2}	0.41	0.99 ± 0.13
	γgg	0.46	1.44	8.8 ± 1.1		$\gamma \chi_{b0}(2P)$	1.21	5.96	5.9 ± 0.6
	3γ	2.00×10^{-6}	6.25×10^{-6}	-		$\gamma \chi_{b1}(2P)$	2.13	10.48	12.6 ± 1.2
	$\gamma \chi_{b0}(1P)$	1.09	3.41	3.8 ± 0.4		$\gamma \chi_{b2}(2P)$	2.56	12.60	13.1 ± 1.6
	$\gamma \chi_{b1}(1P)$	1.84	5.75	6.9 ± 0.4		$\gamma \eta_b(1S)$	$5.70 imes10^{-2}$	0.28	$-0.058 \pm 0.016^{+0.01}_{-0.01}$
	$\gamma \chi_{b2}(1P)$	2.08	6.50	7.15 ± 0.35		$\gamma \eta_b(2S)$	1.10×10^{-2}	5.41×10^{-2}	< 0.062
	$\gamma\eta_b(1S)$	$5.65 imes10^{-2}$	0.18	$0.11 \pm 0.04^{+0.07}_{-0.05}$		$\gamma \eta_b(3S)$	$6.58 imes 10^{-4}$	3.24×10^{-3}	-
	$\gamma \eta_b(2S)$	$5.80 imes 10^{-4}$	1.81×10^{-3}	-		$\pi\pi\Upsilon(1S)$	1.77	8.71	6.57 ± 0.15
	$\pi\pi\Upsilon(1S)$	8.57	26.80	26.45 ± 0.48		$\pi\pi\Upsilon(2S)$	0.42	2.07	4.67 ± 0.23

DOALTATIANUT

Bottomonium


TABLE IX. Radiative decay chains of the $\Upsilon(2S)$ and $\Upsilon(3S)$ states involving the $\chi_{bJ}(1P, 2P)$ mesons. The branching fractions are	
$\mathcal{B}_1 = \mathcal{B}(n^3S_1 \to m^3P_J + \gamma), \ \mathcal{B}_2 = \mathcal{B}(m^3P_J \to n'^3S_1 + \gamma), \ \text{and} \ \mathcal{B}_3 = \mathcal{B}(n'^3S_1 \to \mu^+\mu^-).$ For the theoretical calculation, we take the	
branching fraction \mathcal{B}_3 from PDG2014. The experimental data is taken from Ref. [79].	


Decay chain	\mathcal{B}_1 (%)	\mathcal{B}_2 (%)	\mathcal{B}_3 (%)	$\mathcal{B}_{\mathrm{The}}~(10^{-4})$	$\mathcal{B}_{\rm Exp}$ [79] (10 ⁻⁴)
$2^3S_1 \to 1^3P_0 \to 1^3S_1$	3.41	1.38	2.48	0.12	$0.29\substack{+0.17+0.01\\-0.14-0.08}$
$2^3S_1 \rightarrow 1^3P_1 \rightarrow 1^3S_1$	5.75	33.27	2.48	4.74	$6.86\substack{+0.47+0.44\\-0.45-0.35}$
$2^3S_1 \rightarrow 1^3P_2 \rightarrow 1^3S_1$	6.50	31.87	2.48	5.14	$3.63^{+0.36+0.18}_{-0.34-0.19}$
$3^3S_1 \rightarrow 2^3P_0 \rightarrow 2^3S_1$	5.96	0.54	1.93	0.062	$0.66\substack{+0.49+0.20\\-0.40-0.03}$
$3^3S_1 \rightarrow 2^3P_1 \rightarrow 2^3S_1$	10.48	11.91	1.93	2.41	$4.95\substack{+0.75+1.01\\-0.70-0.24}$
$3^3S_1 \rightarrow 2^3P_2 \rightarrow 2^3S_1$	12.60	12.86	1.93	3.13	$3.22\substack{+0.58+0.16\\-0.53-0.71}$
$3^3S_1 \rightarrow 2^3P_0 \rightarrow 1^3S_1$	5.96	0.23	2.48	0.034	$0.17\substack{+0.15+0.01\\-0.14-0.12}$
$3^3S_1 \rightarrow 2^3P_1 \rightarrow 1^3S_1$	10.48	6.84	2.48	1.78	$3.52\substack{+0.28+0.17\\-0.27-0.18}$
$3^3S_1 \rightarrow 2^3P_2 \rightarrow 1^3S_1$	12.60	8.36	2.48	2.61	$1.95\substack{+0.22+0.10\\-0.21-0.16}$
$3^3S_1 \rightarrow 1^3P_0 \rightarrow 1^3S_1$	0.74	1.38	2.48	0.025	
$3^3S_1 \rightarrow 1^3P_1 \rightarrow 1^3S_1$	0.79	33.27	2.48	0.65	$1.16\substack{+0.78+0.14\\-0.67-0.16}$
$3^3S_1 \rightarrow 1^3P_2 \rightarrow 1^3S_1$	0.41	31.87	2.48	0.32	$4.68^{+0.99}_{-0.92}\pm0.37$

The X(3872)

- Discovered by Belle in 2003
- Confirmed by CDFII, D0 and BaBar
- LHCb set the quantum numbers to $J^{PC}=1^{++}$ in 2014
- $\frac{\Gamma(\omega J/\psi)}{\Gamma(\pi^+\pi^- J/\psi)} = 0.8 \pm 0.3$ *Difficult to explain as a* $c\overline{c}$ *state*
- Mass very close to $D^0 \overline{D}^{*0}$ threshold
- Ratio can be easily explained on the molecular picture due to the mass difference between $D^0 \bar{D}^{*0}$ and $D^+ \bar{D}^{*-}$
- Possible explanations
 - Pure molecule
 - Mixed $c\bar{c} D\bar{D}^*$ molecule
 - Tetraquark
 - Hybrid

15th International Workshop on Meson Physics

Molecular picture

Use symmetries of QCD:

• Heavy Quark Spin Symmetry

Hidden-charm sector: A $D^* \overline{D}^* 2^{++}$ should appear as a bound state X(4012) Other states depends on additional assumptions

• Heavy Flavor Symmetry

Hidden-bottom sector

 $B\bar{B}^* \ 1^{++}$ and $B^*\bar{B}^* \ 2^{++}$ analogs as bound states

Other states depends on additional assumptions

$$V(D\bar{D}^* 1^{++}) = V(D^*\bar{D}^* 2^{++})$$

$$V(B^{(*)}\bar{B}^{(*)}) = V(D^{(*)}\bar{D}^{(*)})$$

Molecular picture

Bottom partner of the *X*(3872):

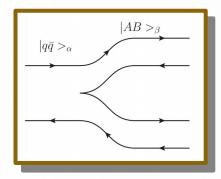
- Not found by CMS, Phys. Lett. B 727, 57 (2013)
- Not found by ATLAS, Phys. Lett. B 740, 199 (2015)
- $\bullet\,$ Not found by Belle, Phys. Rev. Lett. 113, 142001 (2014) $\qquad \Upsilon(1S)\omega$

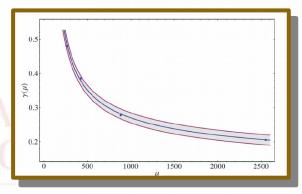
 $\Upsilon(1S)\pi^+\pi^-$

Coupling:

- Microscopic model (like Cornell)
- Phenomenological 3P0 model, OZI allowed decays

Strong decays -> one meson and two-meson states are coupled


On the quark model means that $q\overline{q}$ and $qq\overline{q}\overline{q}$ should be mixed


• On the 3P0 model there is only one parameter

$$\gamma(\mu) = \frac{\gamma_0}{\log(\frac{\mu}{\mu_0})}$$
$$\gamma_0 = 0.81 \pm 0.02$$

J. Segovia, DRE, F. Fernández, Phys. Lett. B 715, 322 (2012)

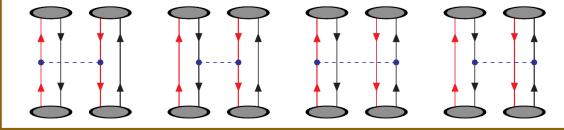
15th International Workshop on Meson Physics

Quark model

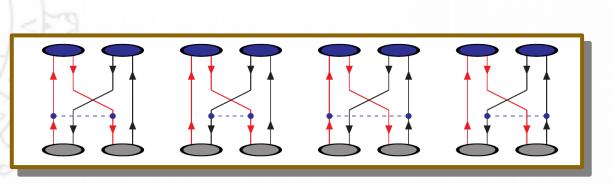
Two meson dynamics

Hadronic state: $|\Psi\rangle = \sum_{\alpha} c_{\alpha} |\psi\rangle + \sum_{\beta} \chi_{\beta}(P) |\phi_{M1}\phi_{M2}\beta\rangle$ Two meson dynamics: $\sum_{\beta} \int \left(H^{M_{1}M_{2}}_{\beta'\beta}(P', P) + V^{eff}_{\beta'\beta}(P', P)\right) \chi_{\beta}(P)P^{2}dP = E\chi_{\beta'}(P')$ $V^{eff}_{\beta'\beta}(P', P) = \sum_{\alpha} \frac{h_{\beta'\alpha}(P')h_{\alpha\beta}(P)}{E - M_{\alpha}}$ The effective potential is:

- Attractive for states above threshold
- Repulsive for states below threshold



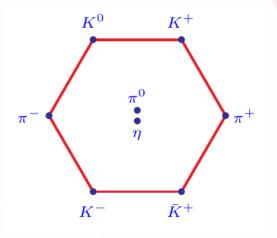
Two meson dynamics


Direct terms:

- No change of quark content
- Cancel for color interactions

Rearrangement process:

- Change quark content
- Color interactions contribute
- Suppressed

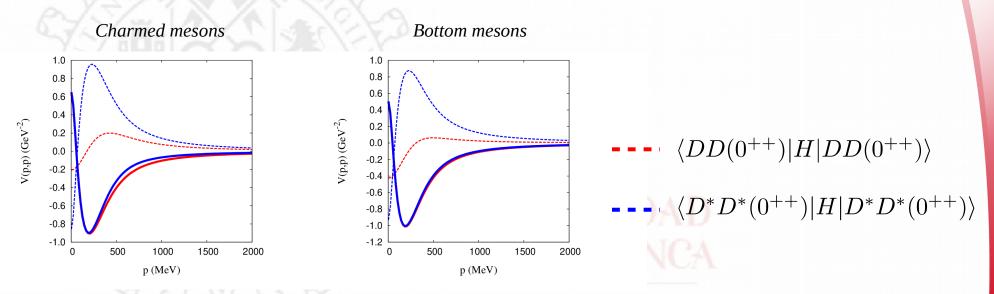


The Quiral Quark Model

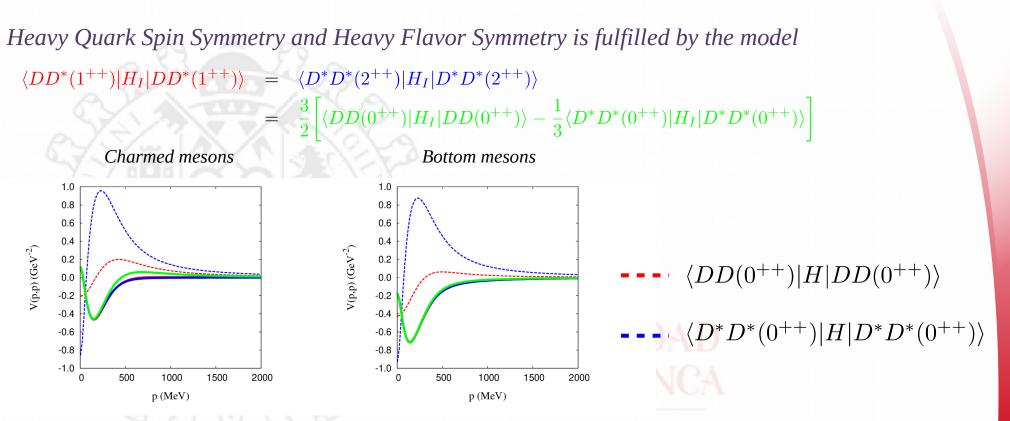
VNIVERSIDAD DSALAMANCA CAMPUS DE EXCELENCIA INTERNACIONA

- Spontaneous Chiral Symmetry Breaking Pseudo-goldstone boson exchange
- One gluon exchange
- Confinement

$$V_{q_iq_j} = \begin{cases} q_iq_j = nn \Rightarrow V_{CON} + V_{OGE} + V_{GBE} + V_{SBE} \\ q_iq_j = nQ \Rightarrow V_{CON} + V_{OGE} \\ q_iq_j = QQ \Rightarrow V_{CON} + V_{OGE} \end{cases}$$

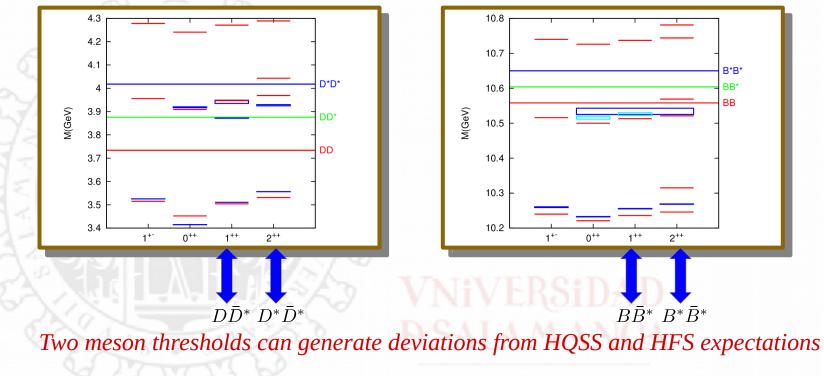

A. Manohar and H. Georgi, Nucl. Phys. B 324 (1984) F. Fernández et al., J. Phys. G 19 (1993)

HQSS and HFS


Heavy Quark Spin Symmetry and Heavy Flavor Symmetry is fulfilled by the model

 $\frac{2}{\sqrt{3}} \langle D^* D^* (0^{++}) | H_I | D D (0^{++}) \rangle = \langle D D (0^{++}) | H_I | D D (0^{++}) \rangle - \langle D^* D^* (0^{++}) | H_I | D^* D^* (0^{++}) \rangle$

HQSS and HFS



HQSS and HFS breaking

Charmonium

Bottomonium

Deviations from HQSS and HFS

- The 1⁺⁺ channel does not bind without coupling to the $\chi_{c1}(2P)$
- We get an additional state, the X(3872), when we couple to the $\chi_{c1}(2P)$ and the $\chi_{c1}(2P)$ state appears as a candidate to the X(3940)
- We don't get a bound state for the 2⁺⁺ channels. Differs from HQSS expectations
- We don't get the 1⁺⁺ bottom analog although is close to bind. Differs from HFS
 We get a 2⁺⁺ bottom analog.

- The X(3872) Belle 2003. LHCb determined to be a 1⁺⁺ state in 2014
- The Y(3940) Belle 2005.
 - BaBar confirmed it in 2008 with a mass around 3914
 - Belle in 2010 reported a state with mass 3915 and possible 0^{++} or 2^{++} quantum numbers the X(3915) that was relabeled $\chi_{c0}(2P)$
 - Guo and Meissner, and Olsen challenged this assignment
 - $X(3915) \rightarrow \omega J/\psi$ Too large
 - Not seen on $D\bar{D}$
 - Mass splitting with the 2⁺⁺ too small
 - *Zhou reanalyzed the data finding a 2⁺ assignment*
 - Relabeled as X(3915)
- The X(3930) Belle 2006. J=2 was assigned to be the $\chi_{c2}(2P)$ although lower in mass expected in the naive quark model.
- The X(3940) Belle 2007. J^{PC}=??? not seen on $D\bar{D}$ and seen on $D\bar{D}^*$. Suggests 1^{++}
- The X(3860) Belle 2017. 0⁺⁺ favored

$J^{PC} = 0^{++}$	$2^3 P_0(c\overline{c})$		${\omega J/\psi} \ {3880}$			
<u>A</u>	1.1		10			
$J^{PC} = 2^{++}$	$2^3P_2(c\overline{c})$	$D\bar{D}$	$\omega J/\psi$	$D_s \overline{D}_s$	$D^* \overline{D}^*$	$D\bar{D}^* + D^*\bar{D}$
		3724	3880	3937	4017	3877
NV.V.	100	- /0	C 11 1	NY Y		

Table 1

Mass and decay width, in MeV, and probabilities of the different Fock components, for model A.

J^{PC}	Mass	Width	$\mathcal{P}[c\bar{c}]$	$\mathcal{P}[D\bar{D}]$	$\mathcal{P}[D\bar{D}^*]$	$\mathcal{P}[\omega J/\psi]$	$\mathcal{P}[D_s\bar{D}_s]$	$\mathcal{P}[D^*\bar{D}^*]$
0++	3890.3	6.7	44.1%	21.6%	-	28.4%	2.6%	3.3%
0^{++}	3927.4	229.8	19.2%	66.3%	-	5.3%	3.7%	5.5%
2++	3925.6	19.0	42.2%	11.3%	37.0%	4.0%	0.4%	5.1%

Width of the first 0⁺⁺ state with high uncertainty G.L. Yu et al. Arxiv: 1704.06763

Two possible scenarios:

- X(3860) second 0⁺⁺, no Y(3940) and X(3915)/X(3930) with the 2⁺⁺
- X(3860) first 0⁺⁺, Y(3940) second 0⁺⁺ and X(3915)/X(3930) with the 2⁺⁺

Hyperfine splitting differs from naive quark model

$\overline{J^{PC} = 0^{++}}$	$2^3 P_0(c\overline{c})$	$D\bar{D}$	$\omega J/\psi$	$D_s \overline{D}_s$	$D^*\bar{D}^*$	
		3724	3880	3937	4017	
2	Y.V		10			
$J^{PC} = 2^{++}$	$2^3P_2(c\overline{c})$	$D\bar{D}$	$\omega J/\psi$	$D_s \overline{D}_s$	$D^* \bar{D}^*$	$D\bar{D}^* + D^*\bar{D}$
		3724	3880	3937	4017	3877

Table 2

Mass and decay width, in MeV, and probabilities of the different Fock components for model B.

J ^{PC}	Mass	Width	$\mathcal{P}[c\bar{c}]$	$\mathcal{P}[D\bar{D}]$	$\mathcal{P}[D\bar{D}^*]$	$\mathcal{P}[\omega J/\psi]$	$\mathcal{P}[D_s\bar{D}_s]$	$\mathcal{P}[D^*\bar{D}^*]$
0++	3889.0	11.8	43.5%	27.3%	-	20.4%	3.8%	4.9%
0^{++}	3947.5	201.6	19.4%	66.0%	-	3.7%	8.0%	2.9%
2++	3915.1	19.8	37.8%	14.1%	36.4%	5.12%	0.4%	6.1%

Slight change of the parameters better agreement for the second hypothesis

Hyperfine splitting in distorted by the coupling with two meson channels

Hyperfine splitting differs from naive quark model

$J^{PC} = 0^{++}$	$2^3 P_0(c\overline{c})$	$D\bar{D}$	$\omega J/\psi$	$D_s \overline{D}_s$	$D^*\bar{D}^*$	
		3724	3880	3937	4017	
2	1.		10			
$J^{PC} = 2^{++}$	$2^3P_2(c\overline{c})$	$D\bar{D}$	$\omega J/\psi$	$D_s \overline{D}_s$	$D^* \bar{D}^*$	$D\bar{D}^* + D^*\bar{D}$
		3724	3880	3937	4017	3877

Table 3

Product of the two-photon decay width and the branching fraction to different channels (in eV) for the $J^{PC} = 2^{++}$ sector for each model, and comparison with Belle and BaBar Collaboration experimental results.

 $X(3915) \blacklozenge$ $X(3930) \blacklozenge$

		Belle	BaBar	model A	model B
	$\Gamma_{\gamma\gamma} \times \mathcal{B}(2^{++} \to \omega J/\psi)$	$18 \pm 5 \pm 2$ [8]	$10.5 \pm 1.9 \pm 0.6$ [9]	20.9	24.9
	$\Gamma_{\gamma\gamma} \times \mathcal{B}(2^{++} \to \omega J/\psi)$ $\Gamma_{\gamma\gamma} \times \mathcal{B}(2^{++} \to D\bar{D})$	$180 \pm 50 \pm 30$ [36]	$249 \pm 50 \pm 40$ [37]	75.4	81.4
-1	$\Gamma_{\gamma\gamma} \times \mathcal{B}(2^{++} \to D\bar{D^*})$	-	-	196.0	151.9

Test the X(3915)/X(3930) hypothesis:

• Data for the X(3915) can be understand with the 2^{++} assignment (0^{++} would be too high)

Data for the X(3940) in agreement if we consider final DD states through DD*

Some new resonances

- LHCb measured the X(4140), X(4274), X(4500) and X(4700)
- X(4140) measured previously by CDF, D0, CMS, Belle and BaBar
- X(4140) and X(4274) are 1⁺⁺
- X(4500) and X(4700) are 0⁺⁺
- For the X(4140)
 - Multiquark models (Lebeled and Polosa) expected the X(4140) but the X(4274) expected as a 0^{−+}
 - Molecular interpretation expected X(4140) as a 0^{++} or $2^{++}D_s^*\overline{D}_s^*$ molecule
 - Tetraquark models expected 0^{-+} , 1^{-+} or 0^{++} , 2^{++} states
- For the X(4500) and X(4700)
 - A virtual state at 4.48 GeV is predicted by Wang et al.
- Naive quark model also has states in this energy region

The $\chi_{c1}(3P)$

TABLE I. Naive quark-antiquark spectrum in the region of interest of the LHCb [4,5] for the 0^{++} and 1^{++} channels.										
State	J^{PC}	nL	Theory (MeV)	Experiment (MeV)						
χ _{c0}	0^{++}	3 <i>P</i>	4241.7							
		4P	4497.2	$4506 \pm 11^{+12}_{-15}$						
		5P	4697.6	$4704 \pm 10^{+14}_{-24}$						
χ_{c1}	1^{++}	3P	4271.5	4273.3 ± 8.3						
		4P	4520.8							
		5P	4716.4							

The $\chi_{c1}(3P)$ has a mass compatible with the X(4274) The width is close to the experimental Value. However other experiment found evidences of the X(4274) • CDF $\Gamma = 32^{+22}_{-15} \pm 8$ MeV • CMS $\Gamma = 38^{+30}_{-15} \pm 16$ MeV TABLE II. Open-flavor strong decay widths (in MeV) and branching fractions (in %) of the X(4274) meson with quantum numbers $nJ^{PC} = 31^{++}$. The experimental value of the total decay width is taken from Refs. [4,5].

			\mathcal{B} (%)
3 <i>P</i>	DD		
	DD^*	17.35	58.24
	DD_0^*	0.26	0.88
	$D^*\check{D^*}$	0.43	1.44
	$D_s D_s$		
	$D_s D_s^*$	8.49	28.48
	$D_s^* D_s^*$	3.26	1.95
	Total	29.8	100.00
		DD_0^* D^*D^* D_sD_s $D_sD_s^*$ $D_s^*D_s^*$	$\begin{array}{cccc} DD_0^* & 0.26 \\ D^*D^* & 0.43 \\ D_sD_s & \cdots \\ D_sD_s^* & 8.49 \\ D_s^*D_s^* & 3.26 \end{array}$

9 SALAMANCA

			$[4,5]$ for the 0^{++} and	tum in the region of 1^{++} channels.
State	J^{PC}	nL	Theory (MeV)	Experiment (MeV)
χ _{c0}	0^{++}	3 <i>P</i>	4241.7	
		4P	4497.2	$4506 \pm 11^{+12}_{-15}$
		5P	4697.6	$4704 \pm 10^{+14}_{-24}$
Xcl	1^{++}	3P	4271.5	4273.3 ± 8.3
		4P	4520.8	
		5P	4716.4	

TABLE III. Open-flavor strong decay widths (in MeV) and branching fractions (in %) of the X(4500) meson with quantum numbers $nJ^{PC} = 40^{++}$. The experimental value of the total decay width is taken from Refs. [4,5].

State	nL	Channel	Γ (MeV)	\mathcal{B} (%)
χ_{c0}	4P	DD	13.27	11.53
		DD^*		
		DD_0^*		
		DD_1	19.50	16.94
		DD'_1	27.23	23.65
		DD_2^*		
		$D^* ar{D^*}$	2.19	1.90
		$D^*D_0^*$	0.86	0.75
		$D^*D_1^{\circ}$	3.18	2.70
		$D^*D'_1$	25.86	22.47
		$D^*D_2^*$	18.12	15.74
		$D_s D_s$	0.06	0.0
		$D_s D_s^*$		
		$D_s D_{s0}^*$		
		$D_s D_{s1}(2460)$	0.74	0.64
		$D_s^* D_s^*$	3.76	3.27
		$D_s^* D_{s0}^*$	0.33	0.29
$92 \pm 21^+$	-21	Total	115.11	100.00

The $\chi_{c0}(4P)$ has a mass and width compatible with the X(4500)

interest	t of the I	LHCb [4	$[4,5]$ for the 0^{++} and	d 1 ⁺⁺ channels.
State	J^{PC}	nL	Theory (MeV)	Experiment (MeV)
χ_{c0}	0^{++}	3 <i>P</i>	4241.7	
		4P	4497.2	$4506 \pm 11^{+12}_{-15}$
		5P	4697.6	$4704 \pm 10^{+14}_{-24}$
Xcl	1^{++}	3P	4271.5	4273.3 ± 8.3
		4P	4520.8	
		5P	4716.4	

The $\chi_{c0}(5P)$ has a mass and width compatible with the X(4700)

numbers $nJ^{PC} = 50^{++}$. The experimental value of the total decay	E IV. Open-flavor strong decay widths (in Me ing fractions (in %) of the $X(4700)$ meson with c	
width is taken from Refs. [4,5].	1	al decay

State	nL	Channel	Γ (MeV)	\mathcal{B} (%)
X c0	5P	DD	12.32	10.10
		DD^*		
		DD_0^*		
		DD_1	6.93	5.68
		DD'_1	3.61	2.96
		DD_2^*		
		$D^*\bar{D^*}$	8.77	7.19
		$D^*D_0^*$	5.69	4.66
		D^*D_1	2.32	1.90
		$D^*D'_1$	20.39	16.71
		$D^*D_2^*$	56.22	46.07
		$D_s D_s$	0.11	0.09
		$D_s D_s^*$		
		$D_s D_{s0}^*$		
		$D_s D_{s1}(2460)$	2.41	1.98
		$D_s D_{s1}(2536)$	0.26	0.22
		$D_s D_{s2}^*$		
		$D_s^*D_s^*$	1.36	1.12
		$D_{s}^{*}D_{s0}^{*}$	1.27	1.04
		$D_{s}^{*}D_{s1}(2460)$	0.29	0.24
		$D_{s}^{*}D_{s1}(2536)$	0.00	0.00
		$D_{s}^{*}D_{s2}^{*}$	0.03	0.02
		$D_{s0}^* \overline{D_{s0}^*}$	0.03	0.03
120 ± 30	$^{+42}_{-33}$	Total	122.02	100.00

The naive quark model does not have a 1^{++} state at 4140 Maybe a molecule?

 $1^{++} D_s \bar{D}_s^*, D_s^* \bar{D}_s^*, \text{ and } J/\psi\phi$

The X(4140)

TABLE VII. Mass (in MeV) total decay width (in MeV) and probability of each Fock component (in %) for the X(4274) meson. The calculated widths include the contributions of both the $c\bar{c}$ and molecular components. The results have been calculated in the coupled-channel quark model.

Mass	Width	${\cal P}_{car c}$	$\mathcal{P}_{D_sD_s^*}$	$\mathcal{P}_{D_s^*D_s^*}$	$\mathcal{P}_{J/\psi\phi}$
4242.4	25.9	48.7	43.5	5.0	2.7

TABLE VIII. Probabilities (in %) of $nP \ c\bar{c}$ bare states for the X(4274) meson.

Mass (MeV)	$\mathcal{P}_{c\bar{c}}$	\mathcal{P}_{1P}	\mathcal{P}_{2P}	\mathcal{P}_{3P}	\mathcal{P}_{4P}	$\mathcal{P}_{(n>4)P}$
4242.4	48.7	0.000	0.370	99.037	0.488	0.105

 $0^{++} D^* \overline{D}_1^{(')}, D_s \overline{D}_s, D_s^* \overline{D}_s^*, \text{ and } J/\psi \phi$

TABLE V. Mass (in MeV) total decay width (in MeV) and probability of each Fock component (in %) for the X(4500) and X(4700) mesons. The calculated widths include the contributions of both the $c\bar{c}$ and molecular components. The results have been calculated in the coupled-channel quark model.

Mass	Width	$\mathcal{P}_{c\bar{c}}$	$\mathcal{P}_{D^*D_1}$	$\mathcal{P}_{D^*D_1'}$	$\mathcal{P}_{D_s D_s}$	$\mathcal{P}_{D_s^*D_s^*}$	$\mathcal{P}_{J/\psi\phi}$
4493.6	79.2	57.2	8.4	33.1	0.9	0.4	< 0.1
4674.1	50.2	47.6	27.2	21.0	1.6	2.6	< 0.1

TABLE VI. Probabilities (in %) of $nP \ c\bar{c}$ bare states for the X(4500) and X(4700) mesons.

Mass (MeV)	$\mathcal{P}_{c\bar{c}}$	$\mathcal{P}_{(n<3)P}$	\mathcal{P}_{3P}	\mathcal{P}_{4P}	\mathcal{P}_{5P}	$\mathcal{P}_{(n>5)P}$
4493.6	57.2	3.033	11.332	80.037	5.573	0.026
4674.1	47.6	0.014	0.001	2.062	97.071	0.853

Conclusions

- The naive quark model gives a good guidance to heavy meson spectroscopy
- One meson and two meson channels should be coupled
 - HQSS and HFS expectations for molecules can change by nearby $c\overline{c}$ or $b\overline{b}$ states
 - Hyperfine splittings on naive quark model expectations can change by nearby two meson channels
- Some states above threshold can be understood within the naive quark model with small influence of nearby thresholds.

