Analysis of the $\mathrm{B}^{+}->\mathrm{K}^{+} \mathrm{J} / \Psi \phi$ decay at low $\mathrm{J} / \Psi \phi$ invariant masses and Ω_{c} states

En Wang, Ju Jun Xie, Li Sheng Geng and Eulogio Oset

Microscopic description of the dominant mechanism

Relashionship with the $\mathrm{B}^{+}->\mathrm{K}^{+} \mathrm{D}^{*}$ s D^{*} sbar reaction

The $X(4160)$ as a dynamically generated resonance, mostly D*s D*sbar

The unavoidable cusp in the J/ $\Psi \phi$ distribution at the $D^{*} D^{*}$ sbar threshold

New fit to data al low J/ $\Psi \phi$ invariant masses

Amplitude analysis of $B^{+} \rightarrow J / \psi \phi K^{+}$decays

LHCb analysis

Contri- bution	sign. or Ref.	$M_{0}[\mathrm{MeV}]$	$\Gamma_{0}[\mathrm{MeV}]$	FF \%	f_{L}	f_{\perp}
$X(4140)$	8.4σ	$4146.5 \pm 4.5_{-2.8}^{+4.6}$	$83 \pm 21_{-14}^{+21}$	$13.0 \pm 3.2_{-2.0}^{+4.8}$		
ave.	Table 1	4147.1 ± 2.4	15.7 ± 6.3			

Table 1: Summary of experiments on the $\mathrm{X}(4140)$

Year	Experiment	$B \rightarrow J / \psi \phi K$					
	luminosity	yield	$X(4140)$ peak				
2008	CDF $2.7 \mathrm{fb}^{-1}[1]$	58 ± 10	$4143.0 \pm 2.9 \pm 1.2$	$11.7_{-5.0}^{+8.3} \pm 3.7$	3.8σ		
2009	Belle $[22]$	325 ± 21	4143.0 fixed	11.7 fixed	1.9σ		
2011	CDF $6.0 \mathrm{fb}^{-1}[29]$	115 ± 12	$4143.4_{-3.0}^{+2.9} \pm 0.6$	$15.3_{-6.1}^{+10.4} \pm 2.5$	5.0σ	$14.9 \pm 3.9 \pm 2.4$	
2011	LHCb $0.37 \mathrm{fb}^{-1}[21]$	346 ± 20	4143.4 fixed	15.3 fixed	1.4σ	$<7 @ 90 \% \mathrm{CL}$	
2013	CMS $5.2 \mathrm{fb}^{-1}[25]$	2480 ± 160	$4148.0 \pm 2.4 \pm 6.3$	$28{ }_{-11}^{+15} \pm 19$	5.0σ	10 ± 3 (stat.)	
2013	D0 $10.4 \mathrm{fb}^{-1}[26]$	215 ± 37	$4159.0 \pm 4.3 \pm 6.6$	$19.9 \pm 12.6_{-8.0}^{+1.0}$	3.0σ	$21 \pm 8 \pm 4$	
2014	BaBar $[24]$	189 ± 14	4143.4 fixed	15.3 fixed	1.6σ	$<13.3 @ 90 \% \mathrm{CL}$	
2015	D0 $10.4 \mathrm{fb}^{-1}[27]$	$p \bar{p} \rightarrow J / \psi \phi \ldots$	$4152.5 \pm 1.7_{-5.4}^{+6.2}$	$16.3 \pm 5.6 \pm 11.4$	$4.7 \sigma(5.7 \sigma)$		
Average			4147.1 ± 2.4	15.7 ± 6.3			

Analysis of the $B^{+} \rightarrow J / \psi \phi K^{+}$data at low $J / \psi \phi$ invariant masses and the $X(4140)$ and $X(4160)$ resonances

En Wang, Ju Jun Xie, Li Sheng Geng and Eulogio Oset, arxiv 1710.0206

Cabibbo favoured process, and external emision, color favored

How can this be related to $J / \Psi \phi$?
D*s D*sbar is vector-vector with c cbar s sbar, can be related to $J / \Psi \phi($ which also has c cbar s sbar)
One should study the vector-vector interaction with charm in coupled channels and see what happens.

The $Y(3940), Z(3930)$ and the $X(4160)$ as dynamically generated resonances from the vector-vector interaction

R. Molina, E. Oset

Local hidden gauge approach Bando et al., used to get the potential V

$$
\mathbf{D}^{*} \overline{\mathbf{D}}^{*}(4017), \mathbf{D}_{\mathbf{s}}^{*} \overline{\mathbf{D}}_{\mathbf{s}}^{*}(4225), \mathbf{K}^{*} \overline{\mathbf{K}}^{*}(1783), \rho \rho(1551), \omega \omega(1565)
$$

Coupled channels

$$
\phi \phi(2039), \mathbf{J} / \psi \mathbf{J} / \psi(6194), \omega \mathbf{J} / \psi(3880), \phi \mathbf{J} / \psi(4116), \omega \phi(1802)
$$

$$
T=(\hat{1}-V G)^{-1} V \quad G_{i}=i \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{1}{q^{2}-m_{1}^{2}+i \epsilon} \frac{1}{(P-q)^{2}-m_{2}^{2}+i \epsilon}
$$

$I^{G}\left[J^{P C}\right]$	Theory		Experiment			
	Mass $[\mathrm{MeV}]$	Width $[\mathrm{MeV}]$	Name	Mass $[\mathrm{MeV}]$	Width $[\mathrm{MeV}]$	$J^{P C}$
$0^{+}\left[0^{++}\right]$	3943	17	$Y(3940)$	3943 ± 17	87 ± 34	J^{P+}
				$3914.3_{-3.8}^{+4.1}$	33_{-8}^{+12}	
$0^{-}\left[1^{+-}\right]$	3945	0	$" Y_{p}(3945) "$			
$0^{+}\left[2^{++}\right]$	3922	55	$Z(3930)$	3929 ± 5	29 ± 10	2^{++}
$\left.0^{+} 2^{++}\right]$	4157	102	$X(4160)$	4156 ± 29	139_{-65}^{+113}	J^{P+}
$1^{-}\left[2^{++}\right]$	3912	120	$" Y_{p}(3912) "$			

Couplings to channels

$\sqrt{s}_{\text {pole }}=4169+i 66, I^{G}\left[J^{P C}\right]=0^{+}\left[2^{++}\right]$				
$D^{*} \bar{D}^{*}$	$\perp D_{s}^{*} \bar{D}_{s}^{*}$	$K^{*} \bar{K}^{*}$	$\rho \rho$	$\omega \omega$
$1225-i 490$	$18927-i 5524$	$-82+i 30$	$70+i 20$	$3-i 2441$

$\phi \phi$	$J / \psi J / \psi$	$\omega J / \psi$	$\phi J / \psi$	$\omega \phi$
$1257+i 2866$	$2681+i 940$	$-866+i 2752$	$-2617-i 5151$	$1012+i 1522$

$J / \Psi \phi$ is obtained from the primary process via final state interaction

These two processes are related and the $\mathrm{K}^{-} \mathrm{J} / \Psi \phi$ production will have a cusp from the D*s D*sbar channel unavoidably

Alternative mechanism Internal emission
Penalized by color factor

Resonant contribution Substitute D*s D*sbar by J/ $\Psi \phi$
 Penalized by $g_{J / \psi \phi} / g_{D_{s}^{*} \bar{D}_{s}^{*}}$ factor

Double penalty: not competitive

We need d-waves in the K^{-}to compensate for spin 2 of $X(4160)$

$$
t_{B^{-} \rightarrow K-D_{s}^{*} \bar{D}_{s}^{*}}^{\text {tree }}=A\left(\vec{\epsilon} \cdot \vec{k} \vec{\epsilon}^{\prime} \cdot \vec{k}-\frac{1}{3} \vec{k}^{2} \vec{\epsilon} \cdot \vec{\epsilon}^{\prime}\right)
$$

$$
\begin{gathered}
\sum_{\text {pol }}\left|t_{B^{-} \rightarrow K^{-} D_{s}^{*} \bar{D}_{s}^{*}}^{\text {tree }}\right|^{2}=\frac{2}{3}|\vec{k}|^{4} \\
\frac{d \Gamma}{d M_{\mathrm{inv}}\left(D_{s}^{*} \bar{D}_{s}^{*}\right)}=\frac{1}{(2 \pi)^{3}} \frac{1}{4 M_{B^{-}}^{2}} \frac{2}{3}|\vec{k}|^{4}\left|\vec{k}^{\prime}\right| \tilde{p}_{D_{s}^{*}}|A|^{2}
\end{gathered}
$$

for $D_{s}^{*} \bar{D}_{s}^{*}$ production including the $X(4160)$ resonance, we make the following replacement,

$$
\begin{aligned}
A \rightarrow & A\left[1+G_{D_{s}^{*} \bar{D}_{s}^{*}}\left(M_{\mathrm{inv}}\left(D_{s}^{*} \bar{D}_{s}^{*}\right)\right)\right. \\
& \left.\times t_{D_{s}^{*} \bar{D}_{s}^{*} \rightarrow D_{s}^{*} \bar{D}_{s}^{*}}\left(M_{\mathrm{inv}}\left(D_{s}^{*} \bar{D}_{s}^{*}\right)\right)\right]
\end{aligned}
$$

To obtain the mass distribution for $J / \psi \phi$

$$
\begin{aligned}
A \rightarrow & A \times G_{D_{s}^{*} \bar{D}_{s}^{*}}\left(M_{\mathrm{inv}}(J / \psi \phi)\right) \\
& \times t_{D_{s}^{*} \bar{D}_{s}^{*} \rightarrow J / \psi \phi}\left(M_{\mathrm{inv}}(J / \psi \phi)\right)
\end{aligned}
$$

Real and Imaginary parts of the G function of Ds* Ds*bar

Note the singularity of $\operatorname{Re} G$ at the threshold

This must create a cusp like structure in J/ $\Psi \phi$ production at threshold of D*s D*sbar

$$
\begin{aligned}
t_{D_{s}^{*} \bar{D}_{s}^{*} \rightarrow D_{s}^{*} \bar{D}_{s}^{*}} & =\frac{g_{D_{s}^{*} \bar{D}_{s}^{*}}^{2}}{M_{\mathrm{inv}}^{2}\left(D_{s}^{*} \bar{D}_{s}^{*}\right)-M_{X}^{2}+i M_{X} \Gamma_{X}} \\
t_{D_{s}^{*} \bar{D}_{s}^{*} \rightarrow J / \psi \phi} & =\frac{g_{D_{s}^{*} \bar{D}_{s}^{*}} g_{J / \psi \phi}}{M_{\mathrm{inv}}^{2}(J / \psi \phi)-M_{X}^{2}+i M_{X} \Gamma_{X}}
\end{aligned}
$$

Γ_{0} accounts for the width
of the $X(4160)$ to

$$
\begin{array}{cl}
\Gamma_{X}=\Gamma_{0}+\Gamma_{J / \psi \phi}+\Gamma_{D_{s}^{*} \bar{D}_{s}^{*}} & \begin{array}{l}
\text { With this width } \\
\text { we incorporate } \\
\text { the Flatté effect }
\end{array} \\
\Gamma_{J / \psi \phi}=\frac{\left|g_{J / \psi \phi}\right|^{2}}{8 \pi M_{X}^{2}} \tilde{p}_{\phi}, & \\
\Gamma_{D_{s}^{*} \bar{D}_{s}^{*}}=\frac{\left|g_{D_{s}^{*} \bar{D}_{s}^{*}}\right|^{2} \tilde{p}_{D_{s}^{*}} \Theta\left(M_{\mathrm{inv}}\left(D_{s}^{*} \bar{D}_{s}^{*}\right)-2 M_{D_{s}^{*}}\right) .}{}
\end{array}
$$

To account for the production of $J / \psi \phi$ via the 1^{++} $X(4140)$ resonance, we take the suitable operator with the kaon in P-wave $\left(\vec{\epsilon}_{J / \psi} \times \vec{\epsilon}_{\phi}\right) \cdot \vec{k}$:

$$
\begin{gathered}
M_{\mathrm{inv}}\left(D_{s}^{*} \bar{D}_{s}^{*}\right) \rightarrow M_{\mathrm{inv}}(J / \psi \phi), \\
\frac{2}{3}|\vec{k}|^{4} \rightarrow 2|\vec{k}|^{2}, \quad \tilde{p}_{D_{s}^{*}} \rightarrow \tilde{p}_{\phi}, \\
B \rightarrow \frac{B M_{X(4140)}^{4}}{M_{\mathrm{inv}}^{2}(J / \psi \phi)-M_{X(4140)}^{2}+i M_{X(4140)} \Gamma_{X(4140)}}
\end{gathered}
$$

For this we take the standard PDG mass and width

Molecular Ω_{c} states generated from coupled meson-baryon channels V. R. Debastiani, ${ }^{1, *}$ J. M. Dias, ${ }^{1,2, \dagger}$ W. H. Liang, ${ }^{3, \ddagger}$ and E. Oset ${ }^{1, \S}$ PRD (2018)

The $\bar{\Xi}_{c} K^{-}$mass spectrum is studied with a sample of pp collision data by LHCb , PRL 017

Five clean narrow peaks are obtained

$$
\begin{gathered}
\Omega_{c}(3000)^{0}, \Omega_{c}(3050)^{0}, \Omega_{c}(3066)^{0} \\
\Omega_{c}(3090)^{0}, \text { and } \Omega_{c}(3119)^{0}
\end{gathered}
$$

Resonance	Mass (MeV)	$\Gamma(\mathrm{MeV})$
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1_{-0.5}^{+0.3}$	$4.5 \pm 0.6 \pm 0.3$
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1_{-0.5}^{+0.3}$	$0.8 \pm 0.2 \pm 0.1$
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3_{-0.5}^{+0.3}$	$<1.2 \mathrm{MeV}, 95 \% \mathrm{C} . \mathrm{L}$.
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5_{-0.5}^{+0.3}$	$3.5 \pm 0.4 \pm 0.2$
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9_{-0.5}^{+0.3}$	$8.7 \pm 1.0 \pm 0.8$
		$1.1 \pm 0.8 \pm 0.4$
		$<2.6 \mathrm{MeV}, 95 \% \mathrm{C} . \mathrm{L}$.

Chiral Lagrangian

$$
\mathcal{L}^{B}=\frac{1}{4 f_{\pi}^{2}}\left\langle\bar{B} i \gamma^{\mu}\left[\left(\Phi \partial_{\mu} \Phi-\partial_{\mu} \Phi \Phi\right) B-B\left(\Phi \partial_{\mu} \Phi-\partial_{\mu} \Phi \Phi\right)\right]\right\rangle
$$

$$
\Phi=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta
\end{array}\right) \quad B=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & n \\
\Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}} \Lambda
\end{array}\right)
$$

$$
\mathcal{L}_{\mathrm{VPP}}=-i g\left\langle\left[\Phi, \partial_{\mu} \Phi\right] V^{\mu}\right\rangle
$$

$$
V_{\mu}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & \rho^{+} & K^{*+} \\
\rho^{-} & -\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & K^{* 0} \\
K^{*-} & \bar{K}^{* 0} & \phi
\end{array}\right)_{\mu}
$$

(a)

(b)

(c)

BARYON WAVE FUNCTIONS

$\Xi_{c}^{+}: \frac{1}{\sqrt{2}} c(u s-s u)$, and the spin wave function is the mixed antisymmetric, χ_{MA}, for the two light quarks.
Ξ_{c}^{0} : the same as Ξ_{c}^{+}, changing $(u s-s u) \rightarrow$ $(d s-s d)$.
$\dot{\Xi}_{c}^{\prime+}: \frac{1}{\sqrt{2}} c^{\prime}(u s+s u)$, and now the spin wave function for the three quarks is the mixed symmetric, χ_{MS}, in the last two quarks,
$\Xi_{c}^{\prime 0}$: the same as Ξ_{c}^{\prime}, changing $(u s+s u) \rightarrow$ $(d s+s d)$.
$\Omega_{c}^{0}: c s s$, and the spin wave function χ_{MS} in the last two quarks, like that for Ξ_{c}^{\prime}.

$$
\begin{aligned}
\rho^{0} & =\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}), \\
\omega & =\frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}), \\
\phi & =s \bar{s}
\end{aligned}
$$

$$
\begin{align*}
\langle p| g \rho^{0}|p\rangle \equiv & \left.\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left\langle\phi_{\mathrm{MS}} \chi_{\mathrm{MS}}+\phi_{\mathrm{MA}} \chi_{\mathrm{MA}}\right| g \frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}) \right\rvert\, \\
& \left.\times \phi_{\mathrm{MS}} \chi_{\mathrm{MS}}+\phi_{\mathrm{MA}} \chi_{\mathrm{MA}}\right\rangle, \tag{10}
\end{align*}
$$

TABLE I. $\quad J=1 / 2$ states chosen and threshold mass in MeV.

States	$\Xi_{c} \bar{K}$	$\Xi_{c}^{\prime} \bar{K}$	ΞD	$\Omega_{c} \eta$	ΞD^{*}	$\Xi_{c} \bar{K}^{*}$	$\Xi_{c}^{\prime} \bar{K}^{*}$
Threshold	2965	3074	3185	3243	3327	3363	3472

TABLE II. $\quad J=3 / 2$ states chosen and threshold mass in MeV.

States	$\Xi_{c}^{*} \bar{K}$	$\Omega_{c}^{*} \eta$	ΞD^{*}	$\Xi_{c} \bar{K}^{*}$	$\Xi^{*} D$	$\Xi_{c}^{\prime} \bar{K}^{*}$
Threshold	3142	3314	3327	3363	3401	3472

$$
T=[1-V G]^{-1} V, \quad G_{l}^{I I}=G_{l}^{I}+i \frac{2 M_{l} q}{4 \pi \sqrt{s}} . \quad T_{i j}=\frac{g_{i} g_{j}}{\sqrt{s}-z_{R}}
$$

TABLE VI. The coupling constants to various channels /for the poles in the $J^{P}=1 / 2^{-}$sector, with $q_{\max }=650 \mathrm{MeV}$, and $g_{i} G_{i}^{I I}$ in MeV .

$3054.05+i 0.44$	$\Xi_{c} \bar{K}$	$\Xi_{c}^{\prime} \bar{K}$	ΞD	$\Omega_{c} \eta$	ΞD^{*}	$\Xi_{c} \bar{K}^{*}$	$\Xi_{c}^{\prime} \bar{K}^{*}$
g_{i}	$-0.06+i 0.14$	$1.94+i 0.01$	$-2.14+i 0.26$	$1.98+i 0.01$	0	0	0
$g_{i} G_{i}^{I I}$	$-1.40-i 3.85$	$-34.41-i 0.30$	$9.33-i 1.10$	$-16.81-i 0.11$	0	0	0
$3091.28+i 5.12$		$\Xi_{c} \bar{K}$	$\Xi_{c}^{\prime} \bar{K}$	ΞD		$\Omega_{c} \eta$	ΞD^{*}
g_{i}	$0.18-i 0.37$	$0.31+i 0.25$	$5.83-i 0.20$	$0.38+i 0.23$	0	$\Xi_{c} \bar{K}^{*}$	$\Xi_{c}^{\prime} \bar{K}^{*}$
$g_{i} G_{i}^{I I}$	$5.05+i 10.19$	$-9.97-i 3.67$	$-29.82+i 0.31$	$-3.59-i 2.23$	0	0	0

TABLE VIII. The coupling connstants to various channels for the poles in the $J^{P}=3 / 2^{-}$sector, with $q_{\max }=650 \mathrm{MeV}$, and $g_{i} G_{i}^{I I}$ in MeV .

3124.84	$\Xi_{c}^{*} \bar{K}$	$\Omega_{c}^{*} \eta$	ΞD^{*}	$\Xi_{c} \bar{K}^{*}$	$\Xi^{*} D$	$\Xi_{c}^{\prime} \bar{K}^{*}$
g_{i}	1.95	1.98	0	0	-0.65	0
$g_{i} G_{i}^{I I}$	-35.65	-16.83	0	0	1.93	0
$3290.31+i 0.03$		$\Xi_{c}^{*} \bar{K}$		$\Omega_{c}^{*} \eta$	Ξ^{*}	$\Xi_{c} \bar{K}^{*}$
g_{i}	$0.01+i 0.02$	$0.31+i 0.01$	0	0	$\Xi^{*} D$	$6.22-i 0.04$
$g_{i} G_{i}^{I I}$	$-0.62-i 0.18$	$-5.25-i 0.18$	0	0	$-31.08+i 0.20$	0

We get three states in very good agreement with experiment, both mass and width

Related work:
[15] J. Hofmann and M.F. M. Lutz, Nucl. Phys. A763, 90 (2005).
[16] C. E. Jimenez-Tejero, A. Ramos, and I. Vidana, Phys. Rev. C 80, 055206 (2009).
[17] O. Romanets, L. Tolos, C. Garcia-Recio, J. Nieves, L. L. Salcedo, and R. G. E. Timmermans, Phys. Rev. D 85, 114032 (2012).

Revisions made after experiment to fit some parameter
[41] G. Montaña, A. Feijoo, and A. Ramos, Eur. Phys. J. A 54, 64 (2018).

Uses SU(4) : matrix elements exchanging ligh vectors are equal. Results similar to ours, but only two states, since they study $1 / 2^{-}$states only
J. \sim Nieves, R. \sim Pavao and L. \sim Tolos, Omega _c excited states within a SU(6)\}_ HQSS model, Eur. Phys. J. C 78114 (2018)

Better results than in [17] but the widths and the positions not so good as in the works of Montaña and present work .

Conclusions

We claim that there are three peaks in the $J / \Psi \phi$ distribution
--One corresponding to $\mathrm{X}(4140)$ with mass around 4135 MeV , and width around 15 MeV .
--Another one corresponding to X(4160)
--A third one corresponding to a cusp of the related D*s D*sbar channel

New fits to data by the LHCb collaboration accounting for the possible production of $X(4160)$ coupling explicitly to both $J / \Psi \phi$ and $D^{*} D^{*}$ sbar would be advisable

The measurement of the $\mathrm{B}+->\mathrm{K}+\mathrm{D}^{*}{ }_{s} \mathrm{D}^{*}$ bar close to the $\mathrm{D}^{*}{ }_{s} \mathrm{D}^{*}$ ${ }_{s}$ bar threshold would be enlightening

As to the Ω_{c} states, we obtain three states using an extention of the local hidden gauge approach, with coupled channels and unitarity, which can be associated to LHCb states, both in mass and width, with only one parameter, a regularizing cutoff, which comes out of natural size.

