Exotic atoms by the DIRAC experiment

Mikhail Zhabitsky for the DIRAC Collaboration (CERN PS-212)

Joint Institute for Nuclear Research, Dubna

CERN, the European Organization for Nuclear Research

Kraków, MESON 2018

< ∃ >

э

The DIRAC Collaboration

- 1998–2003 Lifetime measurement of $\pi^+\pi^-$ -atoms ($A_{2\pi}$)
- 2007–... Search for and lifetime measurement of $\pi^{\pm} K^{\pm}$ -atoms ($A_{\pi K}$)

68 physicists from Czechia, Italy, Japan, Romania, Russia, Spain and Switzerland

Use double-arm spectrometer at CERN Proton Syncrotron (24 GeV/c)

Contents

(1) $\pi^{\pm}K^{\mp}$ atoms

- Theory and experimental method
- The DIRAC spectrometer
- First observation and lifetime measurement of $\pi^{\pm}K^{\mp}$ atoms

2 Long-lived $\pi^+\pi^-$ atoms

- \bullet Method to observe long-lived $\pi^+\pi^-$ atoms
- First observation of long-lived $\pi^+\pi^-$ atoms
- Long-lived $\pi^+\pi^-$ atom lifetime

Results and Outlook

Theory and experimental method The DIRAC spectrometer First observation and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

πK atoms lifetime

Hydrogen-like atoms, formed by π and K mesons, $a_B = 249$ fm, $p_B = 0.79$ MeV/c Lifetime is limited by charge-exchange process

$$\pi^{+}K^{-} \to \pi^{0}\bar{K}^{0} \text{ or } \pi^{-}K^{+} \to \pi^{0}K^{0}$$
$$\frac{1}{\tau} = \frac{8}{9}\alpha^{3}\mu^{2}p\left(a_{0}^{1/2} - a_{0}^{3/2}\right)^{2}(1 + \delta_{K})$$

[S.Bilenky et al., Sov. J. Nucl. Phys. 10 (1969) 469] [J. Schweizer, Phys. Lett. B 587 (2004) 33]

SU(3) ChPT predictions [J. Bijnens et al. JHEP 0405 (2004) 036]: + Roy-Steiner equations [P.Büttiker et al., Eur. Phys. J. C33 (2004) 409]:

$$M_{\pi} a_{0}^{-} = 0.090 \pm 0.005, \quad \delta_{K} = 0.040 \pm 0.022 \quad \Rightarrow \quad \tau = (3.5 \pm 0.4) \cdot 10^{-15} \text{ s}$$
$$M_{\pi} a_{0}^{-} = M_{\pi} \frac{1}{3} \left(a_{0}^{1/2} - a_{0}^{3/2} \right) =$$
$$= 0.071 \ (CA) \quad \Rightarrow \quad 0.0793 \ (1/) \quad \Rightarrow \quad 0.089 \ (2/) \quad \Rightarrow \quad 0.090 \pm 0.005 \ (\text{dis})$$

Recent Lattice QCD calculations [NPLQCD, Phys. Rev. D74 (2006) 114503] [PACS-CS, Phys. Rev. D89 (2014) 054502] [T. Janowski et al., LATTICE2014]

$$\begin{split} & M_{\pi}a_{0}^{-} = 0.077 \pm 0.001^{+0.002}_{-0.005} \\ & M_{\pi}a_{0}^{-} = 0.081 \pm 0.006 \pm 0.012 \\ & M_{\pi}a_{0}^{-} = 0.0745 \pm 0.00020 \end{split}$$

3

Theory and experimental method The DIRAC spectrometer First observation and lifetime measurement of $\pi^\pm {\cal K}^\mp$ atoms

・ロト ・同ト ・ヨト ・ヨト

э

Experimental way to observe πK atoms

• Annihilation:
$$A_{\pi K} \rightarrow \pi^0 K^0$$
 or $\pi^0 \overline{K^0}$

$$\lambda_{\mathsf{anh}} = \beta \gamma \tau pprox 20 \ \mu \mathsf{m}$$
 at $\gamma pprox 20$

Interaction of $A_{\pi K}$ with target atoms [L. Nemenov, Sov. J. Nucl. Phys. 41 (1985) 629]

• Excitation/de-excitation of $A_{\pi K}$

 $\lambda_{
m int}^{
m 1S}pprox$ 40 $\mu{
m m}$ in Ni

• $A_{\pi K}$ ionization \Rightarrow characteristic "atomic" pairs $\pi^{\pm} K^{\mp} (n_A)$:

 $q_{\mathsf{CMS}} < 3 \ \mathsf{MeV}/c \ \Rightarrow \ \mathsf{in} \ \mathsf{laboratory} \ \mathsf{frame} \left[egin{array}{c} E_+ pprox E_- \\ \Theta < 3 \ \mathsf{mrad} \end{array}
ight.$

• Unique $P_{\text{ion}} = \frac{n_A}{N_A} = P_{\text{ion}}(\tau)$ relation

Theory and experimental method The DIRAC spectrometer First observation and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

Experimental way to observe πK atoms

• Annihilation:
$$A_{\pi K} \rightarrow \pi^0 K^0$$
 or $\pi^0 \overline{K^0}$

$$\lambda_{\mathsf{anh}} = eta \gamma {m au} pprox 20 \ \mu \mathsf{m}$$
 at $\gamma pprox 20$

Interaction of
$$A_{\pi K}$$
 with target atoms
[L. Nemenov, Sov. J. Nucl. Phys. 41 (1985) 629]

• Excitation/de-excitation of $A_{\pi K}$

 $\lambda_{\rm int}^{\rm 1S} pprox$ 40 $\mu{\rm m}$ in Ni

• $A_{\pi K}$ ionization \Rightarrow characteristic "atomic" pairs $\pi^{\pm} K^{\mp}$ (n_A) :

$$q_{\mathsf{CMS}} < 3 \ \mathsf{MeV}/c \ \Rightarrow \ \mathsf{in \ laboratory \ frame} \left[egin{array}{c} E_+ pprox E_- \\ \Theta < 3 \ \mathsf{mrad} \end{array}
ight.$$

• Unique $P_{\text{ion}} = \frac{n_A}{N_A} = P_{\text{ion}}(\tau)$ relation

Theory and experimental method The DIRAC spectrometer First observation and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

 $P_{\text{ion}} = P_{\text{ion}}(\tau)$

 $A_{\pi K}$ propagation in matter: annihilation/ionisation/excitation

- Total/excitation cross-sections in Born approximation [St. Mrowczynski, 1986, Phys. Rev. A33, 1549]
 [L. Afanasyev, A. Tarasov, 1996, Sov. J. Nucl. Phys 59, 2130]
- Glauber approximation + ionization cross-sections [T. Heim et al., 2001, J. Phys. B34, 3763]

< ∃⇒

- Multiphoton exchange
- Density matrix formulas
 [O. Voskresenskaya, 2003, J. Phys. B36, 3293]
- Direct calculation of $P_{ion}(\tau)$ [M. Zhabitsky, 2008, Sov. J. Nucl. Phys 71, 1040]

The oracle spectrometer The DIRAC spectrometer First observation and lifetime measurement of $\pi^\pm {\cal K}^\mp$ atoms

$A_{\pi K}$ generation

< A >

· · · · · · · · ·

Theory and experimental method **The DIRAC spectrometer** First observation and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

The DIRAC spectrometer

M Zhabitsky for DIRAC Exotic atoms by the DIRAC experiment

Theory and experimental method The DIRAC spectrometer First observation and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

4 E N

< ∃ >

3

First observation $\pi^{\pm}K^{\mp}$ atoms

Evidence for πK -atoms observation with DIRAC [Adeva et al. (DIRAC Collaboration) Phys. Lett. B674 (2009) 11] Thin Pt target 28 μ m, 2007: $n_A(\pi^-K^+ + \pi^+K^-) = 173 \pm 54$ $N_A(\pi^-K^+ + \pi^+K^-) = kN_C = 280 \pm 70$ $\tau > 0.8 \cdot 10^{-15}$ s (CL=0.9)

Further analysis of data collected on Pt and Ni targets: Observation of πK atoms [Adeva et al. (DIRAC Collaboration) Phys. Rev. Lett. 117, 112001 (2016)]

$$n_A = 349 \pm 62|_{tot}$$
 (5.6 σ)

Theory and experimental method The DIRAC spectrometer First observation and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

Lifetime measurement of $\pi^{\pm}K^{\mp}$ atoms

Two analysis: Q and $(|Q_L|, Q_T)$ fits of experimental data:

Theory and experimental method The DIRAC spectrometer First observation and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

Lifetime measurement of $\pi^{\pm}K^{\mp}$ atoms (Q analyses)

$P_{\rm br}$ from Q-analyses ($Q_T < 4 {\rm MeV}/c$)				
Atom	Year	<i>s</i> , μm	P_{br}	
$A_{\pi K}$	2007	Pt, 25.7	1.2 ± 1.3	
$A_{\pi K}$	2008	Ni, 98	0.53 ± 0.39	
$A_{\pi K}$	2009	Ni, 108	0.29 ± 0.20	
$A_{\pi K}$	2010	Ni, 108	$\textbf{0.33}\pm\textbf{0.22}$	
$A_{K\pi}$	2007	Pt, 25.7	1.09 ± 0.52	
$A_{K\pi}$	2008	Ni, 98	0.32 ± 0.20	
$A_{K\pi}$	2009	Ni, 108	0.23 ± 0.16	
$A_{K\pi}$	2010	Ni, 108	0.41 ± 0.17	

Systematic uncertainties in Pt

πK lab momenta	0.09		
Lab. mom. of bg pairs	0.22		
Total	0.24		

Systematic uncertainties in Ni

Multiple scattering	0.0051
πK lab momenta	0.0052
$P_{br}(au)$ relation	0.0055
Total	0.0092

글 🕨 🗦

Theory and experimental method The DIRAC spectrometer First observation and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

э

$A_{\pi K}$ lifetime and πK scattering lengths (Q analyses)

[DIRAC Collaboration, Phys. Rev. D 96, 052002 (2017)]

πK scattering lengths: experimental results

Inelastic Kp or Kn-scattering with πK in a final state:

$a_{1/2}m_{\pi}$	$a_{3/2}m_{\pi}$	
0.237	-0.074	[Nuovo Cimento 41A (1977) 73]
$\textbf{0.240} \pm \textbf{0.002}$	-0.05 ± 0.06	[Nuovo Cimento 43A (1978) 376]
$\textbf{0.13}\pm\textbf{0.09}$	-0.13 ± 0.03	[J.Phys.G6 (1980) 583]

$$\left|a_{0}^{-}\right|m_{\pi} = \frac{1}{3}\left|a_{1/2} - a_{3/2}\right|m_{\pi} = 0.072^{+0.031}_{-0.020}\Big|_{\text{tot}} \quad \text{[DIRAC Phys. Rev. D 96, 052002 (2017)]}$$

The measurement of the *S*-wave πK scattering lengths sensitively checks low energy QCD (LQCD) predictions. Provides the way to understand the chiral $SU(3)_L \times SU(3)_R$ symmetry breaking of QCD (u, d and s quarks).

Theory and experimental method The DIRAC spectrometer First observation and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

A (1) < (1) < (1) < (1) </p>

글 🕨 🗦

Progress in pionium lifetime measurement

	2001 ¹	2001–2003 ²	2008–2010
n _A	6530	21277	>22000
stat. error	± 294	±407	
$ au$, 10^{-15} s stat. error, 10^{-15} s	$2.91 \\ +0.45 \\ -0.38$	3.15 +0.20 -0.19	
syst. error, 10^{-15} s	$^{+0.19}_{-0.49}$	+0.20 * -0.18	
tot. error, 10^{-15} s	$^{+0.49}_{-0.62}$	+0.28 -0.26	
$ a_0^0 - a_0^2 , \ m_{\pi^+}^{-1}$	0.264	0.253	
tot. error, $m_{\pi^+}^{-1}$	$^{+0.033}_{-0.020}$	$+0.011 \\ -0.011$	

¹ [DIRAC Collaboration, Phys. Lett. B619 (2005) 50]

² [Adeva et al. (DIRAC Collab.), Phys. Lett. B704 (2011) 24]

* Systematic uncertainty is dominated by multiple scattering in the target and in forward detectors — we have performed a direct measurement of scattering in them

Theory and experimental method The DIRAC spectrometer First observation and lifetime measurement of $\pi^{\pm}\kappa^{\mp}$ atoms

(周) (日) (日) (日)

Experimental results on (a_0, a_2)

- K_{e4} decay $(K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu_{e})$ $a_{0} = 0.233 \pm 0.016 \pm 0.007(syst)$ $a_{2} = -0.0471 \pm 0.011 \pm 0.004(syst)$ [NA48, Eur. Phys. J. C54 (2008) 411]
- Cusp-effect $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ $a_{0} - a_{2} = 0.2571 \pm 0.0048(\text{stat}) \pm 0.0029(\text{syst}) \pm 0.0088(\text{theor})$ [NA48/2, EPJ C64 (2009) 589]
- $\pi^+\pi^-$ atoms $|a_0 - a_2| = 0.2533 + 0.0078 |_{stat} + 0.0072 |_{syst}$ [DIRAC, Phys. Lett. B704 (2011) 24]
- $K_{e4} \& K \to 3\pi$ $a_0 - a_2 = 0.2639 \pm 0.0020(\text{stat}) \pm 0.0015(\text{syst}))$ [NA48/2, EPJ C70 (2010) 635]
- ChPT
 - $a_0 = 0.220 \pm 0.005, \; a_2 = -0.0444 \pm 0.0010$
 - [G. Colangelo et al., Nucl. Phys. B 603 (2001) 125]

We expect progress both by experiments and in theory [see Peter Stoffer, MESON 2014]

Method to observe long-lived $\pi^+\pi^-$ atoms First observation of long-lived $\pi^+\pi^-$ atoms Long-lived $\pi^+\pi^-$ atom lifetime

Long-lived $\pi^+\pi^-$ atoms

- Atoms are produced in *nS*-states as $|\Psi_{nS}(0)|^2 \propto \frac{1}{n^3}$
- Atoms get excited, e.g. into nP or nD-states, and leave a target
- Atoms in nS states: lifetime due to annihilation:

 $\tau_{nS} = \tau \cdot n^3$, where $\tau \approx 3 \cdot 10^{-15}$ s

- In vacuum atoms with l>0 can not annihilate as $|\Psi_{nl}(0)|^2
 eq 0$
- Atoms with l>0 undergo radiative deexcitation, e.g. 2P
 ightarrow 1S

 $au_{2p}^{\rm rad} = 1.17 \cdot 10^{-11} \,\,{
m s} \quad \gg \quad au pprox 3 \cdot 10^{-15} \,{
m s}$

- Experimental setup: two thin foils separated by a gap as a target. For $\gamma = 17$: $\lambda(2p) = 5.7$ cm, $\lambda(3p) = 19$ cm
- The observation of long-lived states of $\pi^+\pi^-$ atoms opens the possibility to measure the energy difference between *ns* and *np* states $\Delta E^{(ns-np)}$ and the value of $\pi\pi$ scattering lengths $|2a_0 + a_2|$.

 $\begin{array}{c} \pi^{\pm}\kappa^{\mp} \text{ atoms} \\ \text{Long-lived } \pi^{+}\pi^{-} \text{ atoms} \\ \text{Results and Outlook} \end{array}$

Method to observe long-lived $\pi^+\pi^-$ atoms First observation of long-lived $\pi^+\pi^-$ atoms Long-lived $\pi^+\pi^-$ atom lifetime

Method to observe long-lived $\pi^+\pi^-$ atoms

$$\tau_{2p}^{\rm rad} = 1.17 \cdot 10^{-11} \text{ s} \gg \tau = 2.9 \cdot 10^{-15} \text{ s}$$

< 🗇 🕨

A B > A B >

3

Method to observe long-lived $\pi^+\pi^-$ atoms First observation of long-lived $\pi^+\pi^-$ atoms Long-lived $\pi^+\pi^-$ atom lifetime

Long-lived $\pi^+\pi^-$ atoms: experimental data

- Kink on Q_y by the magnetic field (0.02 T ⋅ m):
- 13.1 MeV/c for all charged pairs from Be
- 2.3 MeV/c for pairs from Pt
- Magnetic field is controlled by observing e⁺e⁻ pairs originated either from Be or Pt target

Method to observe long-lived $\pi^+\pi^-$ atoms First observation of long-lived $\pi^+\pi^-$ atoms Long-lived $\pi^+\pi^-$ atom lifetime

Experiment vs simulation: ratio prompt $\pi^+\pi^-$ over accidentals from Be

Method to observe long-lived $\pi^+\pi^-$ atoms First observation of long-lived $\pi^+\pi^-$ atoms Long-lived $\pi^+\pi^-$ atom lifetime

First observation of long-lived $\pi^+\pi^-$ atomic pairs

Experimental data $Q_v = 2.3 \text{ MeV}/c \text{ kink sub-}$ tracted $Q_T < 2 \text{ MeV}/c \text{ cut}$ $(|Q_L|, Q_T)$ -analysis Shapes from MC Fit parameters: n_{Λ}^{L} from Pt N_{CC} from Be N_{nC} from Be $n_{\Delta}^{L} = 436 \pm 57|_{stat} \pm 23|_{syst}$ $n_{A}^{L} = 436 \pm 61|_{tot}$ [DIRAC, PLB 751 (2015) 12]

Method to observe long-lived $\pi^+\pi^-$ atoms First observation of long-lived $\pi^+\pi^-$ atoms Long-lived $\pi^+\pi^-$ atom lifetime

First observation of long-lived $\pi^+\pi^-$ atomic pairs (II)

Experimental data $Q_v = 2.3 \text{ MeV}/c$ kink subtracted $|Q_L| < 2 \text{ MeV}/c \text{ cut}$ $(|Q_L|, Q_T)$ -analysis Shapes from MC Fit parameters: n_{Λ}^{L} from Pt N_{CC} from Be N_{nC} from Be $n_{A}^{L} = 436 \pm 57|_{\text{stat}} \pm 23|_{\text{syst}}$ $n_{\Lambda}^{L} = 436 \pm 61|_{tot}$ [DIRAC, PLB 751 (2015) 12]

Method to observe long-lived $\pi^+\pi^-$ atoms First observation of long-lived $\pi^+\pi^-$ atoms Long-lived $\pi^+\pi^-$ atom lifetime

Long-lived $\pi^+\pi^-$ atom lifetime

M Zhabitsky for DIRAC Exotic atoms by the DIRAC experiment

Accuracy of a_0^- measurement (πK atoms) with 450 GeV beam

Estimation of time needed to measure a_0^- with statistical accuracy $\delta_{a_0^-}$ on different setups:

- DIRAC is the current setup and beam condition (Ni target)
 - Mod1 is for the DIRAC setup at 450 GeV/c beam (small modification due to another geometry of secondary particle channel)
 - Mod2 is for the essentially modified DIRAC setup at 450 GeV/c beam with higher intensity (I_B).
 - It is assumed that at 450 GeV/c experiment would obtain 3000 spills per day.

Setup	Ep	I _b	θ_{lab}	Solid angle	Beam time	Run time	δ_{a_0}
	GeV	p/spill		sr	S	months	×10 ⁻²
DIRAC	24	$2.7\cdot 10^{11}$	5.7	$1.2 \cdot 10^{-3}$	$1.2\cdot 10^6$	14.5	43.
Mod1	450	$1.0\cdot 10^{11}$	4.0	$0.6 \cdot 10^{-3}$	$5.5\cdot 10^6$	13.6	5.
Mod2	450	$1.0\cdot 10^{12}$	4.0	$0.6 \cdot 10^{-3}$	$6.5\cdot 10^5$	1.6	5.

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

Results and Outlook

To the memory of Valery Yazkov (Dec. 2017)

- Double exotic atoms are unique systems to study strong interaction at threshold
- First measurement of $A_{\pi K}$ lifetime

$$\tau = \left. 5.5^{+5.0}_{-2.8} \right|_{\rm tot} \times 10^{-15} {\rm s}$$

and corresponding $\pi {\it K}$ scattering length

$$|a_0^-|m_\pi = rac{1}{3}|a_{1/2} - a_{3/2}|m_\pi = 0.072^{+0.031}_{-0.020}|_{
m tot}$$

 ${\scriptstyle \bullet}$ First measurement of long-lived $\pi^+\pi^-$ atom lifetime

$$\alpha \tau_{2p}^{\rm rad} = \left(2.2^{+14.2}_{-1.8} \big|_{\rm tot} \right) \cdot 10^{-12} \, {\rm s} \quad \gg \quad \tau = 2.9 \cdot 10^{-15} \, {\rm s}$$

Main tasks for DIRAC:

- Improve precision in pionium lifetime measurement
- Finalize analysis of Coulomb correlated K^+K^- pairs
- Proposal for higher beam momenta (SPS 450 GeV/c)