Contribution ID: 73 Type: plenary talk

η meson physics with WASA-at-COSY

Friday, 8 June 2018 11:30 (0:30)

Collaboration

WASA-at-COSY

Abstract content

The study of η mesons has been one of the main objectives of the WASA experiment, ever since its relocation to the accelerator complex COSY at the Research Center Jülich. As the interaction of η mesons with nucleons is attractive in s-wave, with the $S_{11}(1535)$ resonance situated close to the ηN threshold, studying the properties of ηN and ηA interactions has long been an active research topic. With the η meson being uncharged and short-lived, such studies are best performed in nucleon-nucleon and nucleon-nucleus collisions containing an η meson in the final state. With both COSY and an internal pellet target being able to provide protons as well as deuterons, η meson production can be studied in various reactions, most notably the proton-deuteron fusion. Here, experimental evidence for a strong final state interaction in the η ³He system has lead to an ongoing discussion of a potential η -nucleus bound state.

Another major part of the η physics program with WASA-at-COSY is the search for rare or forbidden decays. The η meson, possessing no allowed strong decays, provides ideal surroundings to search for both rare standard model processes and symmetry violating decays potentially involving beyond standard model physics. Two dedicated datasets, containing $30 \times 10^6 \ \eta$ mesons in $pq \to {}^3{\rm He}\eta$ and $500 \times 10^6 \ \eta$ mesons in $pp\eta$, allow precision studies of standard model decays and stringent limits on symmetry violating processes. Recent results on η meson physics with the WASA-at-COSY experiment will be discussed.

Primary author(s): HÜSKEN, Nils (WWU Münster)

Presenter(s): HÜSKEN, Nils (WWU Münster)

Session Classification: Plenary Session