

η meson physics with WASA-at-COSY

Nils Hüsken for the WASA-at-COSY Collaboration

Outline

The WASA-at-COSY experiment

\circ η production

- analyzing power in $\vec{p}p \rightarrow pp\eta$
- cross sections in $pd \rightarrow {}^{3}\mathrm{He}\eta$ away from threshold
- \circ η decays
 - Dalitz and double-Dalitz decays
 - search for *CP*-violation in $\eta \rightarrow \pi^+\pi^-e^+e^-$
 - search for the C-violating decay $\eta \rightarrow \pi^0 e^+ e^-$

https://physicsandmore.deviantart.com/art/Eta-Meson-Structure-313364574

WASA-at-COSY

Cooler Synchrotron - COSY

- named after its two cooling mechanisms
 - electron cooling
 - \circ stochastic cooling
- provides (un-)polarized p and d with momenta between 0.3 GeV/c and 3.7 GeV/c
- internal & external experiments

 WASA, ANKE & PAX
 TOF

The WASA Experiment

- Pellet Target
 - provides frozen pellets of hydrogen or deuterium
- Central Detector
 - reconstruction of charged particles (e.g., π^{\pm}, e^{\pm}, p) in magnetic field
 - $\circ~$ PID in scintillators
 - photons in electromagnetic calorimeter
- Forward Detector
 - heavier ejectiles $(p, d, {}^{3}\text{He})$ are boosted in forward direction
 - scattering angles determined in proportional chamber
 - PID and energy measurement in various scintillators

Datasets

Production studies:

- $\vec{p}p \rightarrow pp\eta$: ~200.000 events/energy at 2 fixed energies
- $pd \rightarrow {}^{3}\text{He}\eta$: ~250.000 events/energy at 15 fixed energies

Decay studies:

Search for η -mesic nuclei:

- $pd \rightarrow {}^{3}\text{He}\eta$: 30×10^{6} events
- $pp \rightarrow pp\eta$: 500 × 10⁶ events

- $dd \rightarrow (\eta {}^{4}\text{He}) \text{ in } dd \rightarrow {}^{3}\text{He } \pi N$
- $pd \rightarrow (\eta {}^{3}\text{He}) \text{ in } pd \rightarrow pp \pi N \text{ and } pd \rightarrow {}^{3}\text{He} \gamma\gamma$

Datasets

Production studies:

- $\vec{p}p \rightarrow pp\eta$: ~200.000 events/energy at 2 fixed energies
- $pd \rightarrow {}^{3}\text{He}\eta$: ~250.000 events/energy at 15 fixed energies

Decay studies:

- $pd \rightarrow {}^{3}\text{He}\eta$: 30×10^{6} events
- $pp \rightarrow pp\eta$: 500 × 10⁶ events

Search for η -mesic nuclei:

- $dd \rightarrow (\eta {}^{4}\text{He}) \text{ in } dd \rightarrow {}^{3}\text{He } \pi N$
- $pd \rightarrow (\eta {}^{3}\text{He})$ in $pd \rightarrow pp \pi N$ and $pd \rightarrow {}^{3}\text{He} \gamma \gamma$

see: Talk by M. Skurzok, Tuesday, 9am Poster by O. Rundel, Saturday, 2:30pm

η production

η production

Haider & Liu (1985): ηN interaction is attractive
 o possible binding for A ≥ 12

- η -production in *NN* and *NA*-collisions has historically received a lot of interest
 - \circ ηN and ηA interactions can only be studied in the final state
 - many reactions show signs of strong FSI (especially $pd \rightarrow {}^{3}\text{He}\eta$)
 - \circ multiple experiments search for η -mesic nuclei
- to study FSI, it is important to first understand the production mechanism

η production in $\vec{p}p \rightarrow pp\eta$

- new data published in 2018
- based on $200 \times$ larger statistics than previously available
- drastically reduced systematic uncertainties
 - \circ $\,$ symmetry and acceptance of WASA $\,$
 - \circ WASA magnetic field switched off
 - o measurement at two spin orientations
 - two decay modes $(\eta \rightarrow \gamma \gamma \text{ and } \eta \rightarrow \pi^0 \pi^0 \pi^0)$
- production models:
 - \circ near threshold, S_{11} excitation via exchange of virtual mesons
 - o strong isovector component
 - spin as a tool to gain further insight, both into exchanged mesons $(\pi, \eta, \rho, \omega, \sigma)$ and nucleon resonances $(S_{11}(1535), D_{13}(1520), P_{11}(1440))$

η production in $\vec{p}p \rightarrow pp\eta$

measure asymmetry

 $A(\theta_{\eta},\phi_{\eta}) = \frac{N_{\eta}(\theta_{\eta},\phi_{\eta}) - N_{\eta}(\theta_{\eta},\phi_{\eta}+\pi)}{N_{\eta}(\theta_{\eta},\phi_{\eta}) + N_{\eta}(\theta_{\eta},\phi_{\eta}+\pi)}$

- related to the analyzing power by $A(\theta_{\eta}, \phi_{\eta}) = P \cdot A_{y}(\theta_{\eta}) \cos(\phi_{\eta})$
- polarization P obtained from simultaneous measurement of $\vec{p}p \rightarrow pp$
 - using A_y previously measured by the EDDA experiment

p_p / MeV/c	Spin mode	Polarization
2026	up down	0.793 ± 0.010 -0.577 ± 0.007
2188	up down	$0.537 \pm 0.009 \\ -0.635 \pm 0.011$

η production in $\vec{p}p \rightarrow pp\eta$

• combine asymmetry and polarization to extract information on A_y

- data is consistent with s-wave production for Q = 15 MeV
 contradicts predictions of single-meson (π or ρ) exchange
- evidence for higher partial waves at Q = 72 MeV

$$A_{y}(\theta_{\eta})\frac{d\sigma}{d\Omega} = 2\pi \begin{pmatrix} G_{1}^{y0}sin\theta_{\eta} + (H_{1}^{y0} + I_{1}^{y0})sin2\theta_{\eta} \end{pmatrix} \qquad A_{y}(\theta_{\eta})\frac{d\sigma}{d\Omega} = C_{1}sin\theta_{\eta} + C_{2}cos\theta_{\eta}sin\theta_{\eta}$$
$$(Ps^{*}Pp) \qquad (Pp)^{2} \qquad (Ss^{*}Sd)$$

0. -0.1 $= (0.001 \pm 0.001) \mu h/sr$ $C_2 = (-0.002 \pm 0.003) \mu ds$ ∢ 02200 0.1 120 (2018) pseudoscalar meson exchange [1]+ - vector meson exchange [2] Phys. Rev. Lett. - fit: $A_y \frac{d\sigma}{d\Omega} = C_1 sin\theta_\eta + C_2 sin\theta_\eta cos\theta_\eta$ $C_1 = (0.104 \pm 0.006) \mu b/sr$ $C_2 = (0.020 \pm 0.012) \mu b/sr$ 50 150 100 Θ_n (deg)

[1] K. Nakayama et al., Phys. Rev. C 68, 045201 (2003).

[2] G. Faldt and C. Wilkin, Phys. Scr. 64, 427 (2001).

- strong rise at threshold
 - \circ 0 to 400 nb within 1 MeV
 - highly unusual behavior
 - \circ attributed to strong FSI
 - strong enough to support a bound state?
- higher excess energies much less explored
 - most data suggest a plateau
 - narrow variation at $Q \approx$ 50 MeV reported in 2014

- in supercycle mode
 - \circ 8 settings can be stored
 - beam momentum changes with each injection (every 90 s)
 - minimum of systematic differences
- two such supercycles were used
 - o 15 beam momenta in total
 - $\circ p_p = 1.70 \text{ GeV}/c$ measurement in both supercycles

SC 0: p / GeV/c	1.60	1.62	1.64	1.66	1.68	1.70	1.72	1.74
SC 1: p / GeV/c	1.61	1.63	1.65	1.67	1.69	1.70	1.71	1.73

- missing mass analysis, no η reconstruction
- strong signal on top of background from $pd \rightarrow {}^{3}He(\pi\pi)^{0}$ and $pd \rightarrow {}^{3}He(\pi\pi\pi)^{0}$
- signal contribution extracted for 100 bins in $\cos\theta_{\eta}^{*}$
- relative normalization performed using $pd \rightarrow pd$ scattering

- statistical precision:
 - o 2.2 % point-to-point
 - 1.1 % chain-to-point 0
- systematic uncertainty:
 - normalization (16.3%) 0
 - assumptions on elastic \bigcirc scattering distribution
 - rest-gas distribution 0
 - angle reconstruction 0
- variation around $Q \approx 50 \text{ MeV}$ not confirmed:
 - caused by normalization using 0 single-pion production

16

η decays

- η meson ((I^G)J^{PC} = (0⁺)0⁻⁺) is an eigenstate to
 P, C, G and CP
- all strong and electromagnetic decays forbidden to first order
- > long lifetime of $\tau \approx 5 \times 10^{-19}$ s
- > no dominating decay mode
- ideal environment to search for rare or forbidden decays

Decay	Branching Ratio	Topic to investigate		
$\eta ightarrow \pi^0 \pi^0 \pi^0$	$(32.68 \pm 0.23)\%$	Dalitz plot analysis		
$\eta \to \pi^+ \pi^- \pi^0$	$(22.92 \pm 0.28)\%$	Dalitz plot analysis		
$\eta ightarrow \pi^+\pi^-\gamma$	$(4.22 \pm 0.08)\%$	Box anomaly, $\pi^+\pi^-$ interaction		
$\eta ightarrow e^+ e^- \gamma$	$(6.9 \pm 0.4) \times 10^{-3}$	Transition form factor		
$\eta ightarrow \pi^0 \gamma \gamma$	$(2.56 \pm 0.22) \times 10^{-4}$	χΡΤ		
$\eta \to \pi^+\pi^- e^+ e^-$	$(2.68 \pm 0.11) \times 10^{-4}$	Search for CP violation		
$\eta \to e^+ e^- e^+ e^-$	$(2.40 \pm 0.22) \times 10^{-5}$	Transition form factor		
$\eta ightarrow \pi^0 e^+ e^-$	$< 4 \times 10^{-5}$	<i>C</i> violation, BSM physics		
$\eta ightarrow e^+e^-$	$< 2.3 \times 10^{-6}$	BSM physics		
Chin. Phys. C, 40, 100001 (2016) and 2017 update				

Decay	Branching Ratio	Topic to investigate	
$\eta ightarrow \pi^0 \pi^0 \pi^0$	$(32.68 \pm 0.23)\%$	Dalitz plot analysis	
$\eta \to \pi^+ \pi^- \pi^0$	$(22.92 \pm 0.28)\%$	Dalitz plot analysis	
$\eta ightarrow \pi^+\pi^-\gamma$	$(4.22 \pm 0.08)\%$	Box anomaly, $\pi^+\pi^-$ interaction	
$\eta \to e^+ e^- \gamma$	$(6.9 \pm 0.4) \times 10^{-3}$	Transition form factor	see: Talk by D. Pszczel, Monday, 3:45pm
$\eta ightarrow \pi^0 \gamma \gamma$	$(2.56 \pm 0.22) \times 10^{-4}$	χΡΤ	
$\eta \to \pi^+ \pi^- e^+ e^-$	$(2.68 \pm 0.11) \times 10^{-4}$	Search for <i>CP</i> violation	
$\eta ightarrow e^+ e^- e^+ e^-$	$(2.40 \pm 0.22) \times 10^{-5}$	Transition form factor	
$\eta \to \pi^0 e^+ e^-$	$< 4 \times 10^{-5}$	<i>C</i> violation, BSM physics	see: Talk by D. Pszczel,
$\eta ightarrow e^+e^-$	$< 2.3 \times 10^{-6}$	BSM physics	Monday, 3:45pm
	Chin. Phys. C, 40, 100001 (2016) and 2017 update		

Electrons from Origin

η meson decays as a laboratory

• PID: e^{\pm}, π^{\pm}, p separated by ΔE vs $q \cdot p$

 exclude e⁺e⁻ pairs from conversion on detector material (e.g., on the beampipe)

Conversion Event

$\eta \rightarrow \gamma e^+ e^-$ and $\eta \rightarrow e^+ e^- e^+ e^-$

Muon g_{μ} – 2: Hadronic light-by-light

- one of the largest uncertainties in the theoretical calculation of $g_{\mu} 2$
- depends on meson form factor $F(q_1^2, q_2^2)$
- (double-)Dalitz decays help in determining $F(q_1^2, q_2^2)$ for $q_1^2 > 0, q_2^2 = 0$ and $q_1^2 > 0, q_2^2 > 0$

Form factor:

- Dalitz decay: $\frac{d\Gamma}{dq^2} = \left(\frac{d\Gamma}{dq^2}\right)_{QED} \times |F(q^2)|^2$
 - → measure $BR(\eta \rightarrow \gamma e^+e^-)$ & $IM(e^+e^-)$
 - > PDG: $BR(\eta \to \gamma e^+ e^-) = (6.9 \pm 0.4) \times 10^{-3}$
- double-Dalitz decay:
 - → measure $BR(\eta \rightarrow e^+e^-e^+e^-)$
 - > PDG: $BR(\eta \rightarrow e^+e^-e^+e^-) = (2.4 \pm 0.2 \pm 0.1) \times 10^{-5}$

$\eta \rightarrow \gamma e^+ e^-$ and $\eta \rightarrow e^+ e^- e^+ e^-$

$\eta \rightarrow \gamma e^+ e^-$ and $\eta \rightarrow e^+ e^- e^+ e^-$

$\eta ightarrow \pi^+\pi^-e^+e^-$

 $\eta \rightarrow \pi^+ \pi^- \gamma$:

- *CP*-conserving for *M*1 and *E*2 transitions
- *CP*-violating for *E*1 transitions
- would have to measure γ polarization

> Idea:

measure $\eta \rightarrow \pi^+\pi^-[\gamma^* \rightarrow e^+e^-]$ instead

• study asymmetry

$$A_{\phi} = \frac{N(\sin\phi\cos\phi > 0) - N(\sin\phi\cos\phi < 0)}{N(\sin\phi\cos\phi > 0) + N(\sin\phi\cos\phi < 0)}$$

• PDG:

$$BR(\eta \to \pi^+ \pi^- e^+ e^-) = (2.68 \pm 0.11) \times 10^{-4}$$

$$A_{\phi} = (-0.6 \pm 2.5 \pm 1.8) \times 10^{-2}$$

• Theory:
$$A_{\phi} < 1\%$$

 $\eta \rightarrow \pi^+\pi^-e^+e^-$

Summary

η -production:

- new results for A_y in $\vec{p}p \rightarrow pp\eta$
 - more precise by an order of magnitude
 - data suggests pure *s*-wave production at Q = 15 MeV
 - \circ evidence for higher partial waves at Q = 72 MeV
 - provides stringent limits on existing and future theoretical models
- new results for $\sigma(Q)$ and $d\sigma/d\Omega$ in $pd \rightarrow {}^{3}\text{He}\eta$
 - first time a continuous, high statistics dataset is available away from the production threshold
 - unveils a prominent structure in $\sigma(Q)$
 - detailed $d\sigma/d\Omega$ serve as benchmark for future models

 η -decays:

- large datasamples
 - \circ 30 × 10⁶ η in $pd \rightarrow {}^{3}\text{He}\eta$
 - $\circ \quad 500 \times 10^6 \ \eta \ \text{in} \ pp \to pp\eta$
 - o allows to search for rare and forbidden decays
- published results in $pd \rightarrow {}^{3}\text{He}\eta$

0	$\eta \to \pi^+ \pi^- \pi^0$	0	$\eta \rightarrow e^+ e^- \gamma$
0	$\eta ightarrow \pi^+ \pi^- \gamma$	0	$\eta \rightarrow e^+ e^- e^+ e^-$
0	$\eta \rightarrow \pi^+ \pi^- e^+ e^-$	0	$n \rightarrow \pi^0 e^+ e^-$

• analyses of the larger $pp \rightarrow pp\eta$ sample ongoing

Thank you for your attention!

Received funding from: COSY-FFE, DFG GRK 2149 and the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n 283286