Contribution ID: 80 Type: plenary talk

Search for the Kaonic Bound State $\bar{K}NN$ at J-PARC

Monday, 11 June 2018 10:30 (0:30)

Collaboration

the J-PARC E15 collaboration

Abstract content

The possible existence of strongly-bound \bar{K} nuclear-states has been widely discussed as a consequence of the strongly attractive $\bar{K}N$ interaction in I=0 channels. Experimentally, however, available information is not sufficient to discriminate between a variety of conflicting interpretations so far. To break through this situation, we have performed an experimental search for the simplest kaonic nuclear bound state, $\bar{K}NN$, by the in-flight K^-+^3He reactions at $1~{\rm GeV}/c$ (J-PARC E15). The experiment investigates the $\bar{K}NN$ state both in the formation via $^3He(K^-,n)X$ missing-mass spectroscopy and its decay via invariant-mass spectroscopy using $^3He(K^-,\Lambda p)n$ channel. The physics data-taking was performed at the K1.8BR beam-line in 2013 and 2015. With the data-set, we have observed a significant bump structure below the K^-pp mass-threshold in the Λp invariant-mass spectrum. In addition, we have successfully observed $\Lambda(1405)pn$ final state in K^- + 3He reactions by reconstructing $\pi^+\Sigma^\pm pn$ events, which is of special importance to understand the production mechanism of the $\bar{K}NN$ state such as theoretically predicted $\Lambda(1405)N \to \bar{K}NN$ doorway process.

We will discuss the possible existence of the $\bar{K}NN$ state from both aspects of production and decay: $\bar{K}NN$ and $\Lambda(1405)N$ production, and Λp non-mesonic and $(\pi\Sigma)^0 p$ mesonic decay, respectively.

Primary author(s): SAKUMA, Fuminori (RIKEN)

Presenter(s): SAKUMA, Fuminori (RIKEN)

Session Classification : Plenary Session