Warsaw University of Technology

Highlights from the STAR experiment Hanna Zbroszczyk

for the STAR Collaboration

Faculty of Physics, Warsaw University of Technology

supported by National Science Centre, Poland

MESON 2018, Kraków, 9th June 2018

Relativistic Heavy Ion Collider (RHIC) Brookhaven National Laboratory (BNL), New York

2 concentric rings of 1740 superconducting magnets
3.8 km circumference

The Solenoidal Tracker At RHIC

- Tracking and PID (full 2π) TPC: $|\eta| < 1$ TOF: $|\eta| < 1$ BEMC: $|\eta| < 1$ EEMC: $1 < \eta < 2$ HFT (2014-2016): $|\eta| < 1$ MTD (2014+): $|\eta| < 0.5$
- MB trigger and event plane reconstruction BBC: $3.3 < |\eta| < 5$ EPD (2018+): $2.1 < |\eta| < 5.1$ FMS: $2.5 < \eta < 4$ VPD: $4.2 < |\eta| < 5.1$ ZDC: $6.5 < |\eta| < 7.5$
- On-going/future upgrades iTPC (2019+): $|\eta| < 1.5$ eTOF (2019+): $-1.6 < \eta < -1$

RHIC Top Energy p+p, p+Al, p+Au, d+Au, ³He+Au, Cu+Cu, Cu+Au, Ru+Ru, Zr+Zr, Au+Au, U+U QCD at high energy density/temperature Properties of QGP, EoS

Beam Energy Scan Au+Au 7.7-62 GeV QCD phase transition Search for critical point Turn-off of QGP signatures

Fixed-Target Program Au+Au =3.0-7.7 GeV High baryon density regime with 420-720 MeV

- 1. Open heavy flavor $\,D^{0}\,v_{_{1}}^{},\,D^{0}\,R_{_{AA}}^{}\,$ and $R_{_{CP}}^{},\,\Lambda_{_{C}}^{}$
- 2. Quarkonium ΥR_{AA}
- 3. Jet modification and high- $p_{\rm T}$ hadrons di-jet imbalance, di-hadron correlation
- 4. Chirality, vorticity and polarization effects Λ polarization, Φ polarization, CME, CMW
- 5. Initial state physics and approach to equilibrium v_2 and v_3 fluctuations
- 6. Collectivity in small systems v_2 in p+Au and d+Au
- 7. Collective dynamics longitudinal decorrelation, identified particle v_1
- 8. High baryon density and astrophysics v_1 from fixed target
- 9. Correlations and fluctuations femtoscopy
- 10. Phase diagram and search for the critical point net Λ and off-diagonal cumulants
- 11. Thermodynamics and hadron chemistry triton, hypertriton mass
- 12. Upgrades BES-II and forward upgrades

1. Open heavy flavor - $D^0 v_1$, $D^0 R_{AA}$ and R_{CP} , Λ_C

- 2. Quarkonium ΥR_{AA}
- 3. Jet modification and high- $p_{\rm T}$ hadrons di-jet imbalance, di-hadron correlation
- 4. Chirality, vorticity and polarization effects Λ polarization, Φ polarization, CME, CMW

2. Initial state physics and approach to equilibrium - v_2 and v_3 fluctuations

- 6. Collectivity in small systems v_2 in p+Au and d+Au
- 7. Collective dynamics longitudinal decorrelation, identified particle v_1

3. High baryon density and astrophysics - v_1 from fixed target

4. Correlations and fluctuations – femtoscopy

- 10. Phase diagram and search for the critical point net Λ and off-diagonal cumulants
- 5. Thermodynamics and hadron chemistry triton, hypertriton mass

6. Upgrades - BES-II and forward upgrades (as summary)

Results

- The moving **spectators** can produce enormously large **electromagnetic field** (eB $\sim 10^{18}$ G at RHIC)

- Due to **early** production of heavy quarks ($\tau_{CQ} \sim 0.1$ fm/c) positive and negative charm quarks (CQs) can get **deflected** by the initial EM force

- Model predicts **opposite** v_1 for charm and anti-charm quarks induced by this initial EM field

- This induced $\boldsymbol{v}_{_1}$ depends on the balance between E and B fields

- The **magnitude** of such induced v_1 for heavy quarks is much **larger** than the light quarks

- This can induce **larger** v_1 in charm quarks than light

flavors

- Magnitude of charm quark v_1 depends on the drag parameter used in this model

- We can probe the longitudinal profile of the initial matter distribution through heavy flavor $v_{_{\rm 1}}$

(v_1 -slope) Charm-Quark >> (v_1 -slope) Light-Quark

- Charm quarks much more sensitive to the initial tilt than the charged hadrons $D^0(\bar{D}^0) v_1$ can be used to constrain drag coefficients in conjunction with v_2 and R_{AA}

Recent hydro model with initial EM field predicts v_1 -**split** between the D and anti-D meson

D meson v_1 greater than the anti-D Predicted difference in v_1 is about 10 times smaller than the average v_1

Significant suppression at **low** $\mathbf{p}_{_{\mathrm{T}}}$ with no strong centrality dependence, Suppression at **high** $\mathbf{p}_{_{\mathrm{T}}}$ decreases towards more peripheral collisions.

Non-prompt D⁰ R_{AA} study has been performed, need better precision measurements to understand mass dependence of energy loss.

STAR data was re-analysed due to
error found durring analysis
→ erratum will be published soon

First evidence_of non-zero directed flow for heavy flavor Both D^0 and D^0 show **negative** v_1 -slope near mid-rapidity

Heavy flavor $v_1 > \text{light flavor } v_1$

Data can be used to probe **initial** matter distribution

Current precision is **not sufficient** to draw conclusion on magnetic field induced charge separation of heavy quarks

Non-prompt D⁰ \mathbf{R}_{AA} study has been performed, need better precision measurements to understand mass dependence of energy loss.

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos\left[n(\phi - \Phi_{R})\right]\right)$$

Q-cumulant method (traditional)

$$\langle 2 \rangle_n = \left\langle e^{in \, (\phi_1 - \phi_2)} \right\rangle$$

$$v_n^4\{4\} = \langle 4 \rangle_{nn} - 2 \langle 2 \rangle_n \langle 2 \rangle_n$$

$$\langle 4 \rangle_{nm} = \left\langle e^{in (\phi_1 - \phi_2) + im(\phi_3 - \phi_4)} \right\rangle$$

$$NSC(n,m) = \frac{\langle 4 \rangle_{nm} - \langle 2 \rangle_n \langle 2 \rangle_m}{\langle 2 \rangle_n^{Sub} \langle 2 \rangle_m^{Sub}}$$

$$\Phi \text{ - azimuthal angle}$$

Two-subevent method

$$\langle 2 \rangle_n^{Sub} = \left\langle e^{in \left(\phi_A - \phi_B\right)} \right\rangle \qquad v_n^2 \{2\} = c_n \{2\} = \langle 2 \rangle_n^{Sub}$$

✓ Short-range non-flow contribution in v_2 {2} is suppressed by $|\Delta \eta| > 0.7$

$$v_n^4\{4\} = 2\langle v_n^2 \rangle^2 - \langle v_n^4 \rangle$$

$$\left[\frac{v_n\{4\}}{v_n\{2\}}\right]^4 = 2 - \frac{\langle v_n^4 \rangle}{\langle v_n^2 \rangle^2}$$

Sensitive to flow fluctuations

Strong dependence of v_2^{2} and v_2^{4} on collision centrality more significant for higher collision energies

Weak dependence of $v_2\{2\}/v_2\{4\}$ on collision centrality

Weak dependence of $v_2\{2\}$, $v_2\{4\}$ and $v_2\{2\}/v_2\{4\}$ on transverse momentum

Significant dependence of $v_2\{2\}$, $v_2\{4\}$ and $v_2\{2\}/v_2\{4\}$ on collision centrality for different A+A collisions

Anisotropic flow magnitude is sensitive to: - initial-state spatial anisotropy

- flow fluctuations and correlations
- viscous attenuation ($\propto \eta/s$ (T))

on collision centrality for various systems.

Are dynamical final-state fluctuations significantly less than the initial-state fluctuations?

Strong dependence of v_2 {2}, v_2 {4} on collision centrality, collision energy, transverse momentum

Weak dependence of $v_2\{4\}/v_2\{2\}$ and $v_2\{2\}/\varepsilon_2\{2\}$ (elliptic flow fluctuations) on the size of colliding system and: collision centrality, collision energy, transverse momentum

Flow flucuations are dominated by the fluctuations of the **initial state eccentricity**

Similar viscous coefficient for different colliding systems

- Search for turn-off QGP

signatures

cover $\sqrt{s_{_{NN}}}$ from 3.0 GeV to

7.7 GeV

21

Detector efficiency Detector acceptance (each rapidity window) Energy loss

Negavtive pions spectra **are consistent** with AGS results.

Directed flow for pions and protons with fit describing midrapidity region.

Directed flow of protons **agrees** with AGS results.

Directed flow for Λ and $K^0_{\ s}$ particles and their fits describing mid-rapidity region.

HBT radii for pions are **consistent** with AGS results.

- **STAR is ready** to operate with the Fixed Target mode
- Spectra and particle yields agree with AGS results
- **Proton directed flow** v_1 agrees with AGS results
- HBT radii agree with AGS results

High-baryon density regime will be accessible with the Fix Target mode in STAR!

Single- and two- particle distributions

$$P_{1}(p) = E \frac{dN}{d^{3}p} = \int d^{4}x S(x, p)$$

$$S(x,p) - \text{emission function: the distribution of source density probability of finding particle with x and p
$$P_{2}(p_{1}, p_{2}) = E_{1}E_{2}\frac{dN}{d^{3}p_{1}d^{3}p_{2}} = \int d^{4}x_{1}S(x_{1}, p_{1})d^{4}x_{2}S(x_{2}, p_{2})\Phi(x_{2}, p_{2}|x_{1}, p_{1})$$

$$P_{2}(p_{1}, p_{2}) = E_{1}E_{2}\frac{dN}{d^{3}p_{1}d^{3}p_{2}} = \int d^{4}x_{1}S(x_{1}, p_{1})d^{4}x_{2}S(x_{2}, p_{2})\Phi(x_{2}, p_{2}|x_{1}, p_{1})$$

$$P_{1}(p_{1}, p_{2}) = \frac{P_{2}(p_{1}, p_{2})}{P_{1}(p_{1})P_{1}(p_{2})}$$

$$P_{2}(p_{1}, p_{2}) = \frac{P_{2}(p_{1}, p_{2})}{P_{1}(p_{1})P_{1}(p_{2})}$$

$$P_{2}(p_{1}, p_{2}) = \frac{P_{2}(p_{1}, p_{2})}{P_{2}(p_{1}, p_{1})P_{1}(p_{2})}$$

$$P_{2}(p_{1}, p_{2}) = \frac{P_{2}(p_{1}, p_{2})}{P_{2}(p_{1}, p_{1})P_{1}(p_{2})}$$$$

centrality	$R_{in u}p-p$ [fm]	$R_{inv}\overline{p}-\overline{p}$ [fm]	$R_{inv} p - \overline{p}$ [fm]	No significant difference
0-10%	4 . 00 \pm 0.15 \pm 0.02	3 . 83 \pm 0.20 \pm 0.03	3 . 39 \pm 0.12 \pm 0.14	between proton-proton
10-30%	3 . 61 \pm 0.13 \pm 0.17	3 . 68 \pm 0.15 \pm 0.11	2 . 69 \pm 0.10 \pm 0.12	correlation functions
30-70%	$2.72 \pm 0.07 \pm 0.07$	$2.95 \pm 0.11 \pm 0.08$	2 . 56 \pm 0.09 \pm 0.12	

- Clear centrality dependence of source size at BES energies
- Visible energy dependence of source size at BES energies
- No visible difference between proton-proton and antiproton-antiproton correlation functions at $\sqrt{s_{_{NN}}} = 39$ GeV
- Correlation functions contaminated by residual correlations residual correction required

Hyperon-Nucleon:

- play an important role in neutron star and QCD theory

- measurements of masses of hypertriton and anti-hypertriton provide insight into H-N interactions and the CPT symmetry

- measurements sensitive to the temperature and nucleon phase-space of the system freezeout.

- excellent tool to explore the QCD properties
- R. O. Gomes, V. Dexheimer, S. Schramm, and C. A. Z. Vasconsellos, The Astrophys. J. 808, 8 (2015).
- [2] L. L. Lopes and D. P. Menezes, Phys. Rev. C 89, 025805 (2014).
- [3] J. Antoniadis et al., Science 340, 448 (2013).
- [4] László P. Csernai, Joseph I. Kapusta, Phys. Reps. 131, 223 (1986).
- [5] A. Z. Mekjian, Phys. Rev. C 17, 1051 (1978).
- [6] Kaijia Sun et al., Phys. Lett. B 774, 103 (2017).

 $^{3}_{\Lambda}$ H has many decay channels:

- ✓ Non-meson decay channels: $^{3}_{\Lambda}H \rightarrow d + n$ $^{3}_{\Lambda}H \rightarrow p + n + n$

Good PID of charged particles in STAR detector.

Reconstructing ${}^{3}_{\Lambda}H (\frac{3}{\Lambda}\overline{H})$ through: ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$ ${}^{3}_{\Lambda}H \rightarrow d + p + \pi^{-}$

Measurements of the massover-charge ratio differences between light nuclei and antinuclei.

Conclusions & Summary

Summary

1. Open heavy flavor - $D^0 v_1$, $D^0 R_{AA}$ and R_{CP} , Λ_C

- 2. Quarkonium ΥR_{AA}
- 3. Jet modification and high- p_{T} hadrons di-jet imbalance, di-hadron correlation
- 4. Chirality, vorticity and polarization effects Λ polarization, Φ polarization, CME, CMW

5. Initial state physics and approach to equilibrium - v_2 and v_3 fluctuations

- 6. Collectivity in small systems v_2 in p+Au and d+Au
- 7. Collective dynamics longitudinal decorrelation, identified particle v_1

8. High baryon density and astrophysics - v_1 from fixed target

9. Correlations and fluctuations – femtoscopy

- 10. Phase diagram and search for the critical point net Λ and off-diagonal cumulants
- 11. Thermodynamics and hadron chemistry triton, hypertriton mass
- 12. Upgrades BES-II and forward upgrades

Upgrades

iTPC Upgrade:

STAR

- Improves tracking and acceptance at low pT and extra y acceptance
- Ready in 2019

STAR Note 0644: Technical Design Report for the iTPC Upgrade eTOF Upgrade:

- Improves PID and acceptance
- Ready in 2019

arXiv:1609.05102v1 [nucl-ex]

inner TPC upgrade

endcap TOF

EPD Upgrade:

Event Plane Detector

- Improves event plane resolution and centrality definition
- Taking data in 2018 run

STAR Note 0666: An Event Plane Detector for STAR

STAR Note 0696: STAR Collaboration Beam Use Request for Run 19+ (Scenario 1)

Single Beam Energy (GeV/nucleon)	√ <i>S</i> _{NN} (GeV)	Run Year	Run Time	Species	Min-Bias Events Number
5.75	3.5 (FXT)	2020	2 days	Au+Au	100M
7.3	3.9 (FXT)	2019	2 days	Au+Au	100M
9.8	4.5 (FXT)	2019	2 days	Au+Au	100M
13.5	5.2 (FXT)	2020	2 days	Au+Au	100M
19.5	6.2 (FXT)	2020	2 days	Au+Au	100M
31.2	7.7 (FXT)	2019	2 days	Au+Au	100M

- iTPC & eTOF upgrades will be available
- Need 100M events at each energy to match sensitivity of BES-II:
 2 days per energy (3.5 GeV 7.7 GeV)
- Data rate is DAQ limited
- Data at 7.7 GeV will provide an overlap energy with collider mode

FXT in Run 18

Trigger commissioning occurring now

1 Billion events at 7.2 GeV

100 Million events at 3.0 GeV

EPD ready and available for flow analyses

Can obtain fluctuation measurement at energies below BES-I

Thank you!

Backup slides

Strong dependence on collision energy

Weak dependence on collision centrality

Low multiplicity subtraction scaled by short-range near-side ($|\Delta \eta| < 0.5$) jet yield

$$V_{n,n}^{HM}(subtracted) = V_{n,n}^{HM} - V_{n,n}^{LM} \times \frac{N_{asso.}^{LM}}{N_{asso.}^{HM}} \times \frac{Y_{jet,near-side}^{HM}}{Y_{jet,near-side}^{LM}}$$

ATLAS:PRC90(2014)044906 CMS:PLB765(2017)193 STAR: PLB743(2015)333

Short-range near-side jet modification = long-range away-side jet modification

Template fit

$$\begin{split} Y_{templ.}(\Delta \phi) &= \mathsf{F} \times Y_{LM}(\Delta \phi) + Y_{ridge}(\Delta \phi) \\ \text{where} \\ Y_{ridge}(\Delta \phi) &= \mathsf{G} \times (1 + 2 \times \sum_{n=2}^{4} V_{n,n} \times \cos(n\Delta \phi)) \end{split}$$

ATLAS:PRL(116)172301

A new method by ATLAS Collaboration away-side jet shape can be measured in Low Multiplicity (LM) events scaled by "F" parameter (due to jet modification)

 v_2 without subtraction is **larger** than that with subtraction for both methods.

The subtraction of non-flow contributions are very **important** for STAR results are comparable with PHENIX results, except at high pT.

At lowet $p_T v_2$ from Low Multiplicity subtraction is **35% lower** than from template fit

At intermediate p_{T} they **agree** with each other

STAR results are **comparable** with PHENIX ones.

 v_2 in p+Au collisions without subtraction is **larger** than v_2 in d+Au collisions that with subtraction for both methods.

v₂ in p+Au collisions from Low Multiplicity subtraction is **lower** than from template fit.

STAR results are **comparable** with PHENIX results, except at high pT. The STAR data is clearly lower than PHENIX for p_T >1.5 GeV/c

Large **difference** between subtraction method and template fit

v₂ from subtraction method is **negative** at lower collision energies (different kinematics between near-side and away-side jet-like correlations?)

 $\mathbf{v}_{_2}$ from template fit **increases** with collision centrality

Large **difference** between v_2 from two methods has been observed at low energy \rightarrow large uncertainties in the non-flow subtraction in small systems.

We do see **similar** \mathbf{v}_2 between p+Au and d+Au collisions for same multiplicity $\rightarrow \mathbf{v}_2$ is not only driven by initial geometry.

The integral v_2 extracted by a template fit shows an **universal** trend as a function of $\langle dN/d\eta \rangle$ for different small systems at different energies \rightarrow multiplicity plays an important role in small systems.

Directed flow for identified particles **agrees** with AGS results.

Triton from Au+Au Collision

