Light hadron spectroscopy at BESIII

Xi'an Xiong Institute of High Energy Physics, Chinese Academy of Science On behalf of BESIII Collaboration

Meson2018

Outline

BEPCII and BESIII

•Gluonic states

- Observation of $\eta(1475)$ and X(1835) in $J/\psi
 ightarrow \gamma\gamma\phi$
- Amplitude Analysis of $\chi_{c1}
 ightarrow \eta \pi^+ \pi^-$

Strangeonium(like) states

- Observation of $e^+e^-
 ightarrow \eta Y(2175)$ at m Vs > 3.7 GeV
- Search for Z_s at 2.125GeV
- Observation of $h_1(1380)$ in $J/\psi
 ightarrow \eta' K \overline{K} \pi$

Summary

- 2004:start BEPCII construction
- 2008:test run of BEPCII
- 2009-now:data taking
- Beam energy:1.0-2.3GeV
- Max luminosity: 10³³cm⁻²s⁻¹ (reached in April 5th,2016)

BESIII data samples

World largest J/ψ , $\psi(3686)$, $\psi(3773)$, $\psi(4160)$, Y(4260), ... Produced directly from e^+e^- annihilation: an ideal factory to study hadron spectroscopy

Light hadron spectroscopy

- Conventional hadrons:
 - Meson: $q\overline{q}$
 - Bayron:qqq
- QCD allowed other forms:
 - Multi-quark state : \geq 4 quarks
 - Glueball :gg, ggg,...

Not unambiguously established yet

- Hybrid: $q\overline{q}g$, qqqg, ...
- Hadron spectroscopy is a key tool to investigate QCD

Glueball search

Charmonium radiative decay: An ideal hunting ground for light glueballs:

- "Gluon-rich" process
- Clean high statistics data sample
- $I(J^{pc})$ filter in strong decays of charmonium

•LQCD:

- 0⁺⁺ ground state: 1.5-1.7 GeV/c²
- 2⁺⁺ ground state: 2.3-2.4 GeV/c²
- 0^{-+} ground state: 2.3-2.6 GeV/c²
- Clean environment for searching 0^{-+} glueball:
 - Only η , η' excitations in quark model

Phys. Rev. D73 (2006) 014516

$\eta(1405)/\eta(1475)$ puzzle

- •Mark III reported two pseudoscalar states in the 1400 MeV/c² region in radiative J/ψ decays ($a_0(980)\pi$ and K^*K), confirmed by Crystal Barrel and Obelix
- $\bullet 0^{-+}$ glueball in the fluxtube model: ~1.4 GeV/c²
 - ullet No observation by L3 on $\eta(1405).$ Negative results on both states by CLEO
 - First observation of $\eta(1405) \rightarrow f_0(980)\pi^0$ at BESIII, with narrow $f_0(980)$ and large isospin violation

•Triangle Singularity was proposed to explain the anomalies^[1]. $\eta(1405)$ and $\eta(1475)$ could be one state appeared as different line shape in different channel

7

X(1835)

PRL 108,112003 (2012)

(a)

0.3

700

600

500

400 300

200 100

0.0

0.1

0.2

Events/(0.005GeV/c²)

- $X(p\overline{p}) I^{pc} = 0^{-+}$: discovered by BESII in $I/\psi \rightarrow \gamma p\overline{p}$
- X(1835), X(2120) and X(2370) observed in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- X(1835) $J^{pc} = 0^{-+}$: determined in $J/\psi \rightarrow \gamma K^0_{S} K^0_{S} \eta$
- Anomalous X(1835) line shape in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - One broad state with strong coupling to $p\overline{p}$ (flatte)
 - One narrow state below to the $p\overline{p}$ mass threshold interfering with X(1835)

Observation of $\eta(1475)$ and X(1835) in $J/\psi \rightarrow \gamma \gamma \phi$

- •Two structures observed in the $M(\gamma \phi)$:
 - \bullet Angular distribution favored as 0^{-+}
 - M and Γ are consistent with $\eta(1475)$ and the X(1835)
- •Observation of $\eta(1475)$, X(1835) $\rightarrow \gamma \phi$:
 - Sizable <u>ss</u> component
 - One state assumption: Ratio $\frac{\Gamma_{\eta(1405/\eta(1475)\to\gamma\rho)}}{\Gamma_{\eta(1405/\eta(1475)\to\gamma\phi)}}$ is slightly larger than the prediction ^[1]
 - Two states assumption: $\eta(1475)$ could be the radial excitation of the η'

Phys. Rev. D97 (2018) no.5, 051101

9 [1]Phys. Rev. D87, 014023 (2013)

Amplitude Analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^$ using $\psi(3686) \rightarrow \gamma \chi_{c1}$

B€SⅢ

•The $\chi_{c1}
ightarrow \eta \pi^+ \pi^-$ decay is suitable for studying the production of 1^{-+}

- $ullet \pi_1(1600)$ studied in χ_{c1} decays by CLEO-c $^{[1]}$
- \bullet $\pi_1(1400)$ reported only in $\eta\pi$ final states ^[2,3,4,5]
- \bullet Use $448 \times 10^6 \, \psi(3686)$ events
 - $\psi(3686) \rightarrow \gamma \chi_{c1} \rightarrow \gamma \eta \pi^+ \pi^-$

Amplitude Analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^$ using $\psi(3686) \rightarrow \gamma \chi_{c1}$

• Main dominant contribution is from $a_0(980)\pi$

- •First observation of $g'_{\eta'\pi}
 eq 0$ from $a_0(980) o \eta\pi$
- Observed $\chi_{c1} \rightarrow a_2(1700)\pi$ for the first time (> 17 σ)
- •Measured upper limits for $\pi_1(1^{-+})$ in 1.4-2.0 GeV/c² region

Decay	F [%]	Significance $[\sigma]$	$\mathcal{B}(\chi_{c1} \to \eta \pi^+ \pi^-) \ [10^{-3}]$
$\eta \pi^+ \pi^-$			$4.67 \pm 0.03 \pm 0.23 \pm 0.16$
$a_0(980)^+\pi^-$	$72.8 \pm 0.6 \pm 2.3$	>100	$3.40 \pm 0.03 \pm 0.19 \pm 0.11$
$a_2(1320)^+\pi^-$	$3.8\pm0.2\pm0.3$	32	$0.18\pm 0.01\pm 0.02\pm 0.01$
$a_2(1700)^+\pi^-$	$1.0\pm0.1\pm0.1$	20	$0.047 \pm 0.004 \pm 0.006 \pm 0.002$
$S_{K\bar{K}}\eta$	$2.5\pm0.2\pm0.3$	22	$0.119 \pm 0.007 \pm 0.015 \pm 0.004$
$S_{\pi\pi\eta}$	$16.4 \pm 0.5 \pm 0.7$	>100	$0.76 \pm 0.02 \pm 0.05 \pm 0.03$
$(\pi^+\pi^-)_S\eta$	$17.8 \pm 0.5 \pm 0.6$		$0.83 \pm 0.02 \pm 0.05 \pm 0.03$
$f_2(1270)\eta$	$7.8 \pm 0.3 \pm 1.1$	>100	$0.36 \pm 0.01 \pm 0.06 \pm 0.01$
$f_4(2050)\eta$	$0.6 \pm 0.1 \pm 0.2$	9.8	$0.026 \pm 0.004 \pm 0.008 \pm 0.001$
Exotic candidates			U.L. [90% C.L.]
$\pi_1(1400)^+\pi^-$	0.58 ± 0.20	3.5	< 0.046
$\pi_1(1600)^+\pi^-$	0.11 ± 0.10	1.3	< 0.015
$\pi_1(2015)^+\pi^-$	0.06 ± 0.03	2.6	< 0.008

1.5

 $M(\pi^+\pi^-)$ [GeV/c²]

2

2.5

11

100

0.5

Meson2018

Search for strangeonium-like Z_s

- •Y(2175) observed by BaBar, confirmed by Belle, BESII and BESIII
 - A candidate for a tetraquark state, a strangeonium hybrid state, or a conventional ss state
- •Unique place to search for the Zs:
 - Y(2175) is regarded as strangeonium-like state analogied to Y(4260)
 - $Z_c(3900) \rightarrow \pi^{\pm} J/\psi \xrightarrow{\sim} Z_s \rightarrow \pi^{\pm} \phi$

Phys.Rev. D74, 091103(R) (2006)

Observation of $e^+e^- \rightarrow \eta Y(2175)$ at $\sqrt{s} > 3.7 \text{ GeV}$

•The joint statistical significance of the Y(2175) is larger than 10σ

•No significant Zs signal can be seen in $\phi \pi^{\pm}$ invariant mass spectrum

Assumption:

 $M(Z_s) = 1.5 GeV/c^2$

 $\Gamma(Z_s) = 0.05 \text{GeV}$

 $J^{p}(Z_{s})=1^{+}$

Search for Z_s at 2.125GeV

$e^+e^- \rightarrow \phi \pi^+\pi^-(\phi \pi^0\pi^0)$

•PWA is performed:

• $\phi f_0(980)$

• $\phi f_0(1370)$

• $\phi f_2(1270)$

• $\phi\sigma$

•108 $pb^{-1} e^+e^-$ collision data collected at collision energy of 2.125GeV

•No clear Z_s signal is observed in the $\phi\pi$ mass spectrum around 1.4 GeV/c²

• $Z_s\pi$ $M^{2}(\phi\pi^{+}) (GeV^{2}/c^{4})$ M²(φπ⁰) (GeV²/c⁴) Entries / 10MeV/c² Events/10MeV/c² + Data (a) **(b)** (a) (b) Fit result Non Bg 60 400 Z. signal 200 2 2 3 1.2 1.6 1.8 1.4 2 1.6 1.2 1.8 1.4 2 $M^{2}(\phi\pi^{0})$ (GeV²/c⁴) $M^{2}(\phi\pi^{-})$ (GeV²/c⁴) $M(\phi \pi^{\pm})$ (GeV/c²) $M(\phi\pi^0)(GeV/c^2)$

arXiv:1801.10384 , Submitted to PRL

Meson2018

Search for Z_s at 2.125GeV

$$e^+e^- \rightarrow \phi \pi^+\pi^-(\phi \pi^0\pi^0)$$

Meson2018

- Upper limits on the cross sections for Z_s production are determined:
 - Different assumptions with M, Γ and J^p of Z_s
- In addition, the cross sections of $e^+e^- \rightarrow \phi \pi^+\pi^-$ and $e^+e^- \rightarrow \phi \pi^0\pi^0$ are measured to be (343.0 ± 5.1 ± 25.1)pb and (208.3 ± 7.6 ± 13.5)pb

arXiv:1801.10384, Submitted to PRL

Observation of $h_1(1380)$ in $J/\psi \rightarrow \eta' K K \pi$

Meson2018

- $h_1(1380)$ observed by LASS and Crystal Barrel
- Simultaneous fit is performed to the $M(K^*(892)\overline{K})$ in $K^+K^-\pi^0$ and $K^0_SK^\pm\pi^\mp$ modes
- $h_1(1380)$ observed in $J/\psi \rightarrow \eta' h_1(1380)$ (>10 σ)
- The quark contents of the $h_1(1380)$ is predominantly $s\overline{s}$:
 - mixing angle results between $h_1(1170)$ and $h_1(1380)$: 35.9°±2.6°
- The branching fraction:
 - $B(J/\psi \to \eta' h_1(1380) \to \eta' K^*(892)^+ K^- + \text{c. c.}) = (1.51 \pm 0.09 \pm 0.21) \times 10^{-4}$
 - $B(J/\psi \to \eta' h_1(1380) \to \eta' K^*(892)\overline{K} + c.c.) = (2.16 \pm 0.12 \pm 0.29) \times 10^{-4}$

$$\begin{split} \mathsf{M} = & (1423.2 \pm 2.1 \pm 7.3) \textit{MeV} / \textit{c}^2 \\ \mathsf{\Gamma} = & (90.3 \pm 9.8 \pm 17.5) \textit{MeV} \end{split}$$

Summary

- Highlights of latest results in light hadron spectroscopy from BESIII
 - $\eta(1475)$ and X(1835) in $J/\psi
 ightarrow \gamma\gamma\phi$
 - Sizable *ss* component
 - ullet Amplitude Analysis of $\chi_{c1} o \eta \pi^+ \pi^-$
 - Clear evidence for $a_2(1700)$ and no evidence for π_1
 - Observation of $e^+e^-
 ightarrow \eta Y(2175)$ at Vs > 3.7 GeV
 - Significant Y(2175) signal but no evident Z_s
 - Search for Z_s at 2.125GeV
 - No Z_s signal observed, upper limit is given
 - Observation of $h_1(1380)$ in $J/\psi
 ightarrow \eta' K \overline{K} \pi$
 - Predominantly *s* \overline{s} component

ullet BESIII is taking larger J/ψ dataset in 2018, more results are expected in the future

Thanks for your attention!

Meson2018

$\eta(1405)/\eta(1475)$ puzzle

- The contributions from the "Triangle Singularity" mechanism can shift the peak positions in different channels.
- The intermediate on-shell KK*+c.c. pair can exchange an on-shell kaon and then rescatter to the isospin-violating $f_0(980)\pi$

X(1835)

- X(1835) line shape in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - One broad state with strong coupling to $p\overline{p}$ (flatte)
 - One narrow state below to the $p\overline{p}$ mass threshold interfering with X(1835)

Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p\overline{p}$ mass ¹⁶ threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- Use the Flatté formula for the line shape
 - $T = \frac{\sqrt{\rho_{out}}}{\mathcal{M}^2 s i \sum_k g_k^2 \rho_k}$

A pp

molecule-

like state?

- $\sum_{k} g_{k}^{2} \rho_{k} \simeq g_{0}^{2} (\rho_{0} + \frac{g_{p\bar{p}}^{2}}{g_{0}^{2}} \rho_{p\bar{p}})$
- $g_{p\bar{p}}^2/g_0^2$ is the ratio between the coupling strength to the $p\bar{p}$ channel and the sum of all other channels

The state around 1.85 GeV/ c^2			
\mathcal{M} (MeV/ c^2)	$1638.0 {}^{+121.9}_{-121.9} {}^{+127.8}_{-254.3}$		
g_0^2 ((GeV/ c^2) ²)	93.7 +35.4 +47.6 -35.4 -43.9		
$g_{\mathrm{p}\overline{p}}^2/g_0^2$	$2.31 {}^{+0.37}_{-0.37} {}^{+0.83}_{-0.60}$		
$M_{pole} (MeV/c^2) *$	$1909.5 \begin{array}{c} +15.9 \\ -15.9 \\ -27.5 \end{array}$		
$\Gamma_{\rm pole}$ (MeV/ c^2) *	$273.5 \begin{array}{c} +21.4 \\ -21.4 \\ -64.0 \end{array}$		
Branching Ratio	$(3.93 {}^{+0.38}_{-0.38} {}^{+0.31}_{-0.84}) \times 10^{-4}$		

X(1920) is needed with 5.7 σ

Anomalous line shape of $\eta' \pi^+ \pi^-$ near $p\overline{p}$ mass ¹⁷ threshold in J/ $\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

• Use coherent sum of two Breit-Wigner amplitudes

T -	√Pout		pre	'√ <i>Pout</i>
1 –	$M_1^2 - s - iM_1\Gamma_1$	т	$M_2^2 - s$	$s-iM_2\Gamma_2$

	X(1835)				
	M (MeV/ <i>c</i> ²)	$1825.3 \substack{+2.4 \\ -2.4 \atop -2.4} \substack{+17.3 \\ -2.4 \atop -2.4}$			
	Γ (MeV/ c^2)	$245.2 \begin{array}{c} +14.2 \\ -12.6 \end{array} \begin{array}{c} +4.6 \\ -9.6 \end{array}$			
	B.R. (constructive interference)	$(3.01^{+0.17}_{-0.17}{}^{+0.26}_{-0.28}) \times 10^{-4}$			
	B.R. (destructive interference)	$(3.72^{+0.21}_{-0.21}{}^{+0.18}_{-0.35}) \times 10^{-4}$			
pp state?	X(1870)				
	M (MeV/c ²)	$1870.2 \begin{array}{c} +2.2 \\ -2.3 \\ -0.7 \end{array}$			
	Γ (MeV/ c^2)	$13.0 \begin{array}{c} +7.1 \\ -5.5 \\ -3.8 \end{array}$			
	B.R. (constructive interference)	$(2.03^{+0.12}_{-0.12}{}^{+0.43}_{-0.70}) \times 10^{-7}$			
	B.R. (destructive interference)	$(1.57^{+0.09}_{-0.09}{}^{+0.49}_{-0.86}) \times 10^{-5}$			

 $\log \mathcal{L} = 630540.3$

Significance of X(1870) is larger than 7 σ X(1920) is not significant

 $\ensuremath{^*}$ The pole nearest to the $p\overline{p}$ mass threshold

From Min's talk in FPCP

bound

Observation of $\eta(1475)$ and X(1835) in $J/\psi \rightarrow \gamma\gamma\phi$

(b)

0.5

Phys. Rev. D97 (2018) no.5, 051101

•Angular distribution : with the assumption with $\alpha = -1, 0, 1$

$$\frac{d\sigma}{d\Omega} \propto 1 + \alpha \times \cos^2\theta$$

Amplitude Analysis of $\chi_{c1} \rightarrow \gamma \eta \pi^+ \pi^$ using $\psi(3686) \rightarrow \gamma \chi_{c1}$

• Parameterization of $a_0(980)$: dispersion relation

$$D_{\alpha}(s) = m_0^2 - s - \sum_{ch} \Pi_{ch}(s),$$

$$Im\Pi_{ch}(s) = g_{ch}^2 \rho_{ch}(s) F_{ch}(s), \qquad Re\Pi_{ch}(s) = \frac{1}{\pi} P \int_{s_{ch}}^{\infty} \frac{Im\Pi_{ch}(s')ds'}{(s'-s)}.$$

Observation of $h_1(1380)$ in $J/\psi \rightarrow \eta' K K \pi$

B€SⅢ

- LASS: PWA in $K\overline{K}\pi$, h1(1380) with 1+- is observed.
- Crystal Barrel: $p\bar{p} \rightarrow K_L K_S \pi^0 \pi^0$ PWA
- Theory prediction:
 - M=1468 by meson-mixing models
 - M=1386, 1470, 1499 by quark models.
- Fit: $\Gamma(m)$:mass dependent, q:phase space factor ,convolving with K* mass distribution

$$\left|\frac{\sqrt{m\Gamma(m)}}{m^2 - m_0^2 + i \times m\Gamma(m)}\right|^2 \times q$$