

Exotic searches at NA62 Experiment

Roberta Volpe (CP3 UCLouvain)

NA62

The NA62 experiment at SPS @CERN

Designed ad constructed for the measurement of BR(K⁺ $\rightarrow \pi^+\nu\nu$) with ~10% precision

But with a larger and various physics program...

- ~ 200 collaborators
- ~ 30 Institutions

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax (GMU), Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, Sofia, TRIUMF, Turin, Vancouver (UBC)

NA62 timeline

Talk outline

in dump mode

NA62 Apparatus

NA62 Apparatus

- High intensity beam
- Redondant particle identification
- Optimal detectors performance

Roberta Volpe

MESON2018

It can be employed for several searches for new physics in the intensity frontier

HNL searches motivation

Massive sterile neutrinos generated with low scale seesaw mechanism

vMSM Neutrino Minimal Standard Model T. Asaka, M. Shaposhnikov, Phys. Lett. B 620 (2005) 17.

3 right handed neutrinos

Considering the constrains from Neutrinos oscillation, Dark matter amount, Baryon Asymmetry of the Universe (BAU):

Boyarsky et al, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191

Roberta Volpe

MESON2018

HNL Results

NA62 Collaboration Phys. Lett. B778 (2018)

320

0.10

300

350

400

340

0.15

360

0.20

Expected events: $N_{exp} \pm \delta N_{exp}$ Observed events: N_{obs}

HNL Results

NA62 Collaboration Phys. Lett. B778 (2018)

Dark photon

Light (~GeV) vector state with small couplings (not accessible at the energy frontier experiments)

Dark photon to invisible

NA62 Preliminary

LFV, LNV, LFUV searches

NA62 Work in progress

$m_{\text{miss}}^{2} = (p_{K} - p_{e})^{2}$

Channel	Br	
$K^+ \to \pi^+ \mu^+ e^-$	$<1.3\times10^{-11}$	E865, E777
$K^+ \to \pi^+ \mu^- e^+$	$< 5.2 \times 10^{-10}$	E865
$K_L \to \pi^0 \mu^\pm e^\mp$	$<7.6\times10^{-11}$	KTeV
$K_L \to \mu^{\pm} e^{\mp}$	$<4.7\times10^{-12}$	E871

NA62 will improve the existent upper limit to several forbidden or highly suppressed decays

• Lepton Universality test

 $R_K = \Gamma(K^+
ightarrow e^+
u) / \Gamma(K^+
ightarrow \mu^+
u)$

2017 dataset

World largest sample of K+->e+v candidates New measurement method gets rid of most of the systematics which limited the 2007 NA62 measurement

- Dedicated multitrack trigger from July 2016
 - LNV: K⁺-> $\pi^{-}\mu^{+}e^{+}$
 - LFV: K⁺-> π⁻μ^{+/-}e^{-/+}

In the next slides: K -> $\pi\mu\mu$ K-> πee :

• Data samples: 50% of 2016 + 25% of 2017

K-> πee data sample

K+-> πµµ data sample

NA62 Work in progress

- World largest K⁺-> $\pi^+\mu^+\mu^-$ data sample: 4.6 10³ events
- $m(\pi^+\mu^+\mu^-)$ resolution ~1.2 MeV
- With full NA62 dataset 10⁴ candidate events are expected
- Expected O(10¹⁰) sensitivity for search for K⁺-> π^+ S, S-> $\mu^+\mu^-$ with τ < O(1 ns)

Exotic prospects

NA62 Work in progress

*****ALPs (Axion Like Particles) : JHEP 1602, 018 (2016)

Analysis of 1 day taken in beam mode is in progress, looking for 2 photons final state

Conclusions

Not only $K^+ \rightarrow \pi^+ \nu \nu$

M HNL search published with 2015 dataset, large improvements expected with 2016-2018 dataset

Preliminary results on dark photon decaying to invisible

First look at the data samples for LFV/LNV searches: expect to improve the existent upper limit for several final states

Several analyses are ongoing both in kaon and in dump mode

				W	'e are h	101	re																
Accelerator schedule	2015	2016		2017	2018		2019		2020	2021		2022		2023	2	2024		2025	Ι	2026		2027	
LHC	Run 2						LS2			Run 3						LS3					Run 4		
SPS															N	A stop	SF	PS stop					

Target mode

Small sample in dump mode Special trigger to select 2 tracks (no kaon required) Target mode and dump mode (3 months-> 10¹⁸ pot)

Other experiments dedicated to to hidden sector (SHIP, etc...)

Thank you for your attention

Stay tuned!