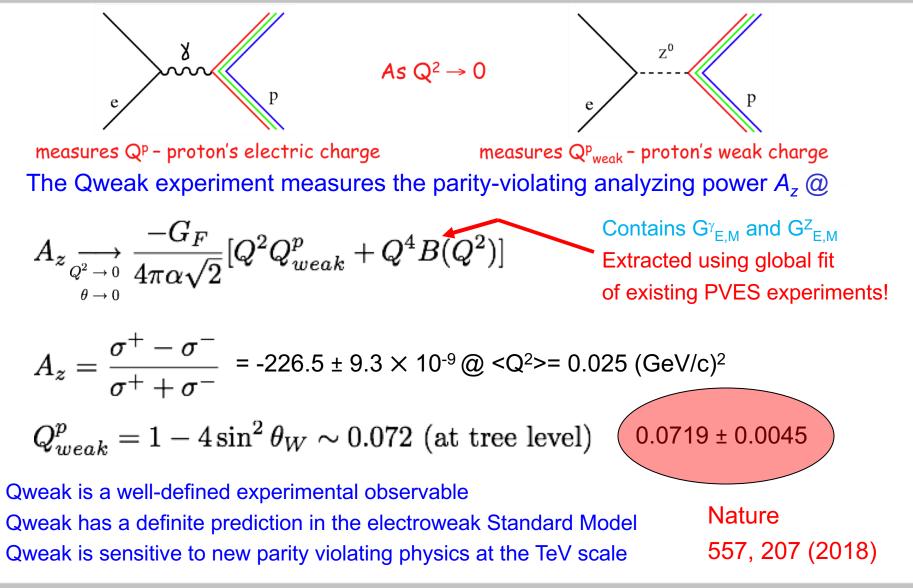


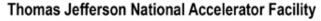
Thomas Jefferson National Accelerator Facility

Outline

Selected Recent Hall C results

12 GeV Upgrade and first experiments in the "12 GeV" Era


Future Plans



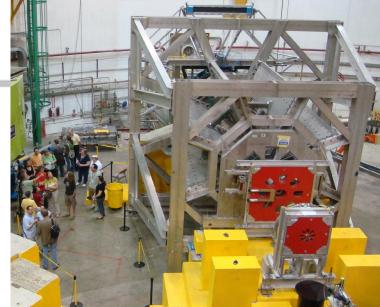
Qweak – Weak charge of proton

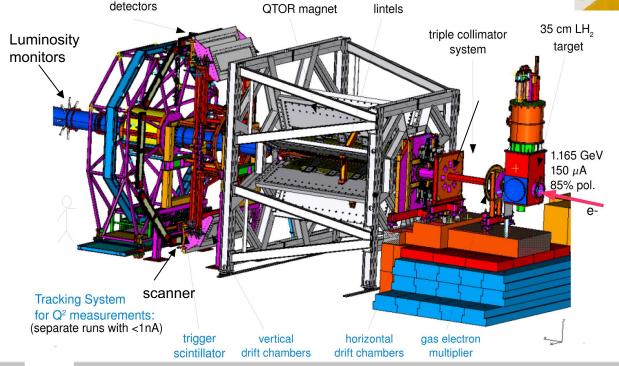
•

•

٠

Jefferson Lab

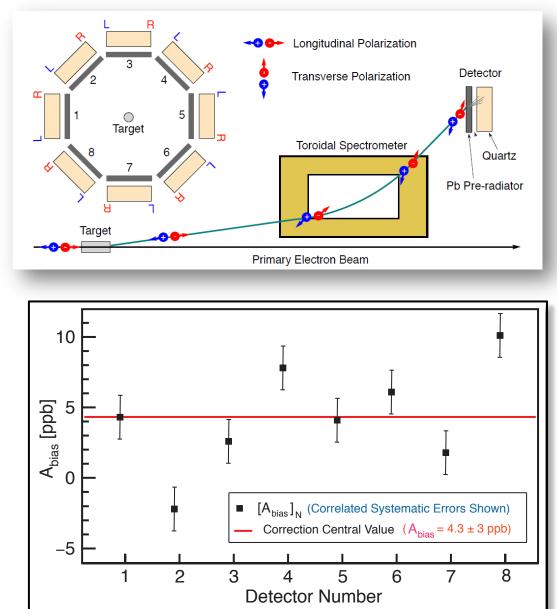

Qweak


Parameters:

Čerenkov

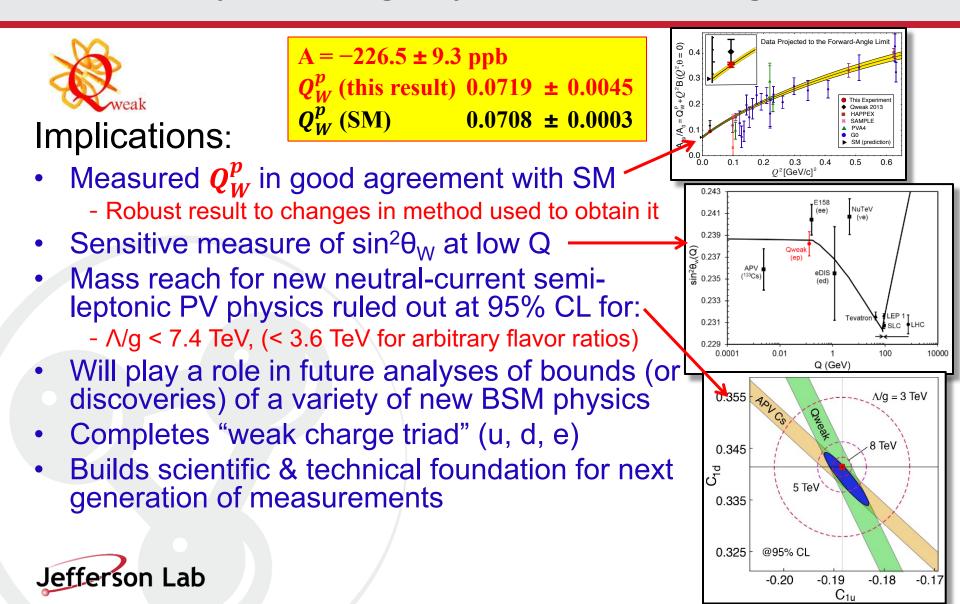
 $I_{beam} = 180 \ \mu\text{A}, \ \pounds = 1.7 \ \text{x} \ 10^{39} \ \text{cm}^{-2}\text{s}^{-1}$ $E_{beam} = 1.15 \ \text{GeV}, \ \text{Beam Pol} = 89\% \ \pm \ 0.6\%$ $\theta = 6^{\circ} - 12^{\circ}, \ <\theta> = 7.9^{\circ}, \ <Q^{2}> = 0.025 \ (\text{GeV/c})^{2}$ Integrated Rate ~ 7 GHz

Target = 34.4 cm LH_2 , 3 kW, 50 ppm

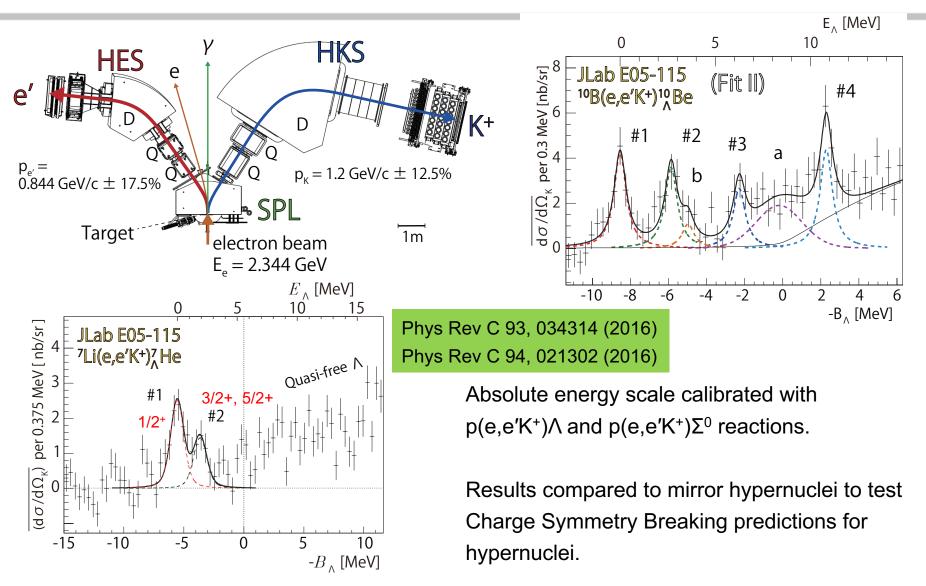


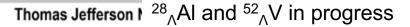
• Experimental method described in NIM A781, 105 (2015)

Detector Optical Imperfections: A_{bias} Systematic


Saw a large, consistent asymmetry $A_{diff} = (A_R - A_L) \sim 290$ ppb in the L & R PMTs of each detector bar.

Effect: Transverse P picked up via g-2 precession thru magnet "analyzed" by Pb pre-radiator just in front of bars \rightarrow L/R asymmetry across each bar.


Qweak parity signal = $(A_R + A_L)/2$, so effect cancels to first order.


Imperfections in bars led to small errors in this cancellation. Correction determined by datadriven and simulation approaches. (agreed to within 1 ppb)

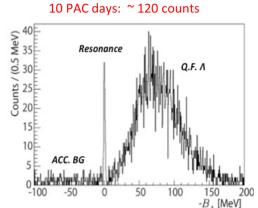
Q_{weak} – precision measurement of PV asymmetry in elastic e-p scattering \rightarrow proton's weak charge

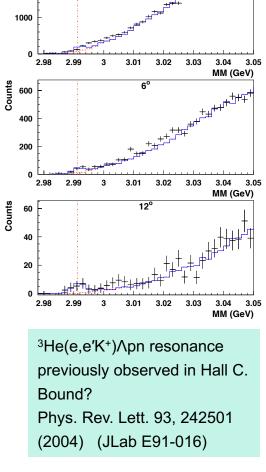
Hypernuclei via A(e,e'K⁺)

Future hypernuclear studies at JLab

Halls A and C hypernuclear collaborations merging for future studies in Hall A.

Two experiments approved.


 "JLab Tritium Era": Tritium target presently installed for several experiments. (DIS high x & x>1 comparison of ³H and ³He, short-range correlations).


Late 2018 will run ³H(e,e'K⁺)Ann

Determine Λn interaction strength.

Also run ³He(e,e'K⁺)Apn

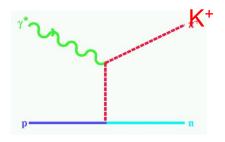
(³He contamination in ³H)

1.7

stuno 2000

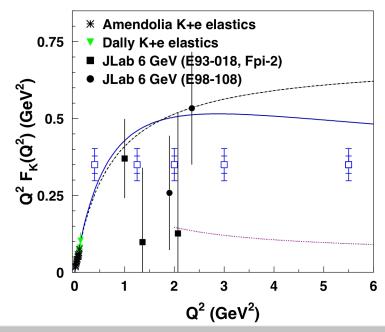
 E12-15-008 – hypernuclear spectroscopy of ⁴⁰_AK & ⁴⁸_AK (e,e'K⁺) on ⁴⁰Ca and ⁴⁸Ca targets
 AN interaction in medium at densities relevant to poutro

 ΛN interaction in medium at densities relevant to neutron stars.



Kaon Form Factor

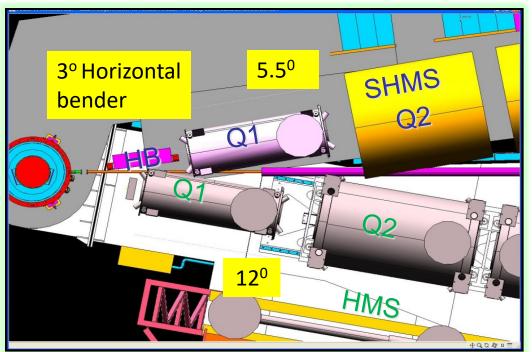
Possible to extract Kaon form factor from longitudinal term of L/T separated p(e,e'K+) cross sections using VGL Regge model.


(Same method as used for $\mathsf{F}_{\pi})$

Old Hall A and C p(e,e'K+) reanalyzed to extract F_{K} .

Carmignotto et.al Phys Rev C 97, 025204 (2018)

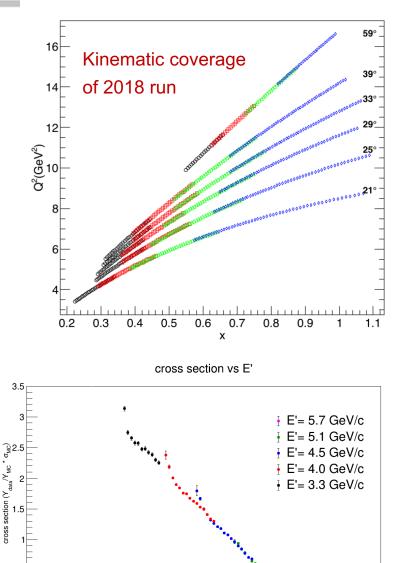
E12-09-011, scheduled to run this year will study scaling behavior of separated $\sigma_{\rm L}$, $\sigma_{\rm T}$ and extract F_K up to 5.5 GeV².


Thomas Jefferson National Accelerator Facility

Hall C after 12 GeV Upgrade

- Beam Energy: 2 11 GeV/c
- NEW Super High Momentum Spectrometer (SHMS)
 - − $P \le 11 \text{ GeV/c}$ (replaces $\le 2 \text{Gev/c}$)
 - Horizontal Bender, 3 Quads, Dipole
 - dP/P 0.5 1.0x10⁻³
 - Acceptance: 4msr, $\Delta P/P=30\%$
 - $5.5^{\circ} < \theta < 40^{\circ}$
 - Good e⁻/π⁻ e⁺/π⁺/K⁺/p PID
- High Momentum Spectrometer (HMS)
 - P \rightarrow 7.5 GeV/c
 - dP/P 0.5 1.0x10⁻³
 - Acceptance: 6.5msr, Δp/p=18%
 - 10.5° < θ < 90°
 - Good e⁻/π⁻ e⁺/π⁺/K⁺/p PID
- Minimum opening angle: ~17°

- Well shielded detector huts
- 2 beamline polarimeters
- Ideal facility for:
 - Rosenbluth (L/T) separations
 - Exclusive reactions
 - Low cross sections (neutrino level)



E12-10-002 Precision F₂ structure function at high x

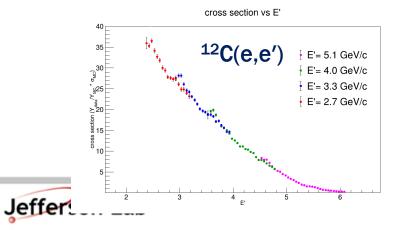
Extend proton and deuteron F_2 structure function precision measurements to larger x and Q². Measuring p(e,e') and d(e,e') cross sections to 3% in the resonance region and beyond up to Q² ~ 17 GeV² and x ~ 0.99

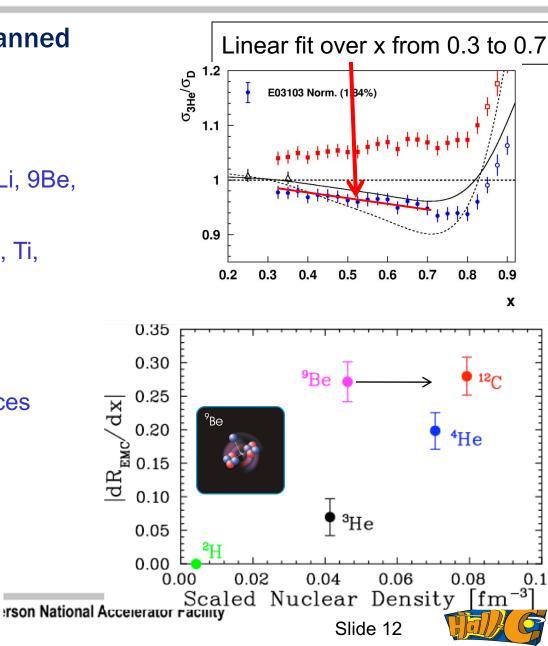
- Constrain Parton Distribution
 Functions at large x
- Distinguish different mechanisms of spin-flavor symmetry breaking (d/u at large x) with precision
 F₂ⁿ/F₂^d (combining with BONUS/Hall B (E12-06-113)
 F2n/F2d)
- Extend studies of local quarkhadron duality in proton and neutron F₂

4

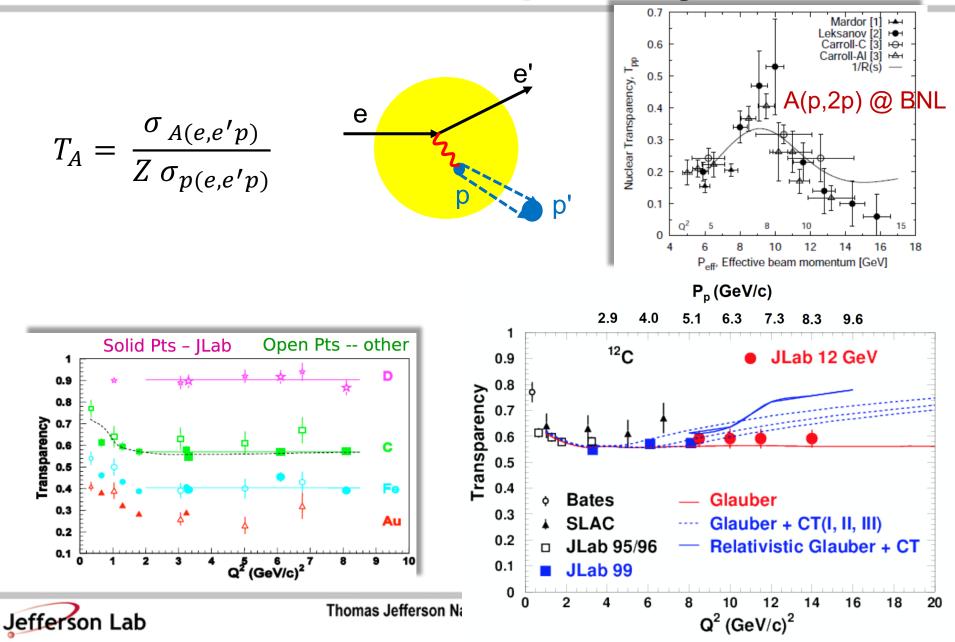
E'

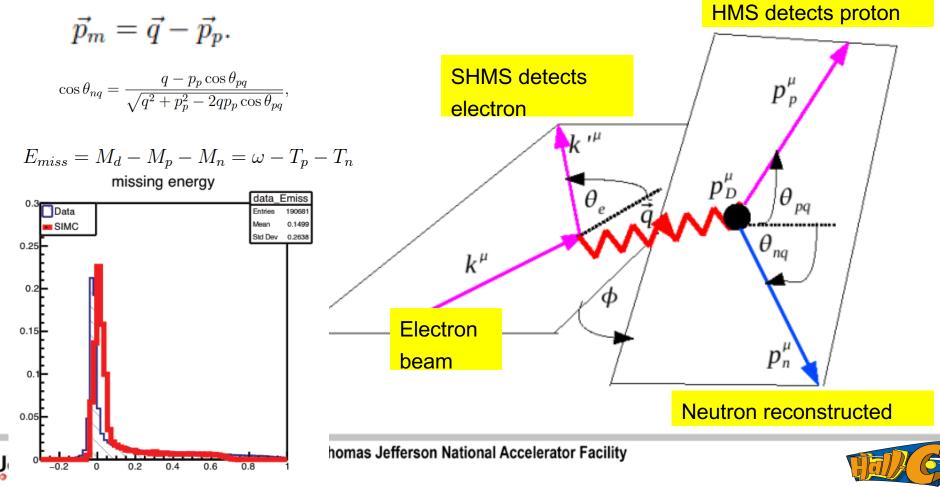
0.5


EMC effect


Detailed study of EMC effect planned in Hall C. (E12-10-008)

```
0.1<x<0.9
Up to Q<sup>2</sup> ≈15GeV<sup>2</sup>
Light nuclei: <sup>1</sup>H, <sup>2</sup>H, <sup>3</sup>He, <sup>4</sup>He, <sup>6,7</sup>Li, 9Be,
<sup>10,11</sup>B, <sub>12</sub>C
Medium/Heavy nuclei: Al, <sup>40,48</sup>Ca, Ti,
<sup>54</sup>Fe, Ni, Cu, Ag, Sn, Au, Th
```

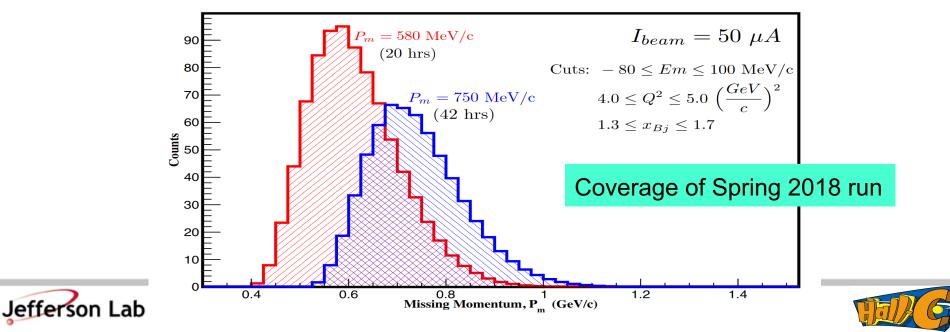

Early 2018 ran ⁹Be, ^{10,11}B, ¹²C



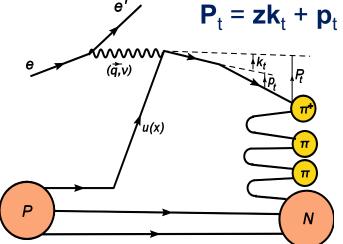
Color Transparency

Deuteron Electro-Disintegration at Very High Missing Momenta (E10-003)

D(e,e'p)n exclusive reaction by using cut on missing energy with the neutron energy and angle reconstructed



d(e,e'p)


Motivation:

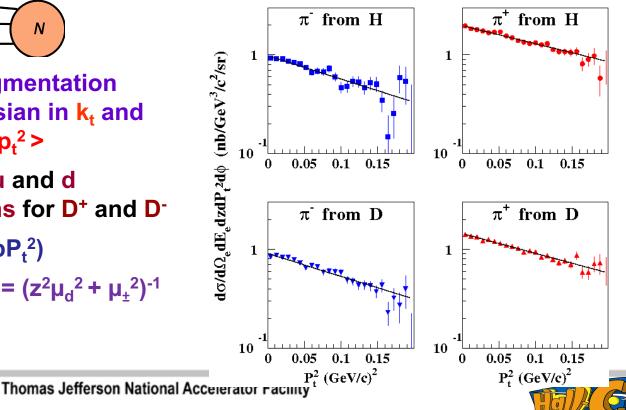
- Explore a new kinematical region of the 2-nucleon system above $p_m > 500$
- No Deuteron data exist at these kinematics!
- Short range correlation studies cover similar region on missing momenta
- Models are able to reproduce the present data with 20%.
- Signs of a dependence on NN potential at highest missing momentum
- Measure at well defined kinematic settings, selected to minimize contributions from FSI and delta at Q² = 4.25

High Missing Momentum

P_t dependence of Semi-inclusive DIS – p/d(e,e' π^{\pm})X

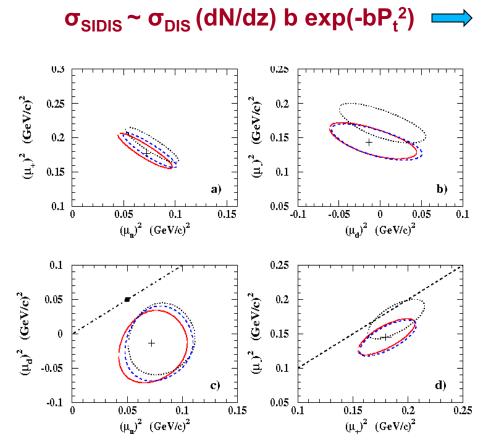
Assume the quark and fragmentation functions widths are Gaussian in k_t and

 p_t and $\langle P_t^2 \rangle = \langle z^2 k_t^2 \rangle + \langle p_t^2 \rangle$ Allow separate widths for u and d quarks, and separate widths for D⁺ and D⁻


 $\sigma_{\text{SIDIS}} \sim \sigma_{\text{DIS}} (dN/dz) b \exp(-bP_t^2)$

$$b_{u}^{\pm} = (z^{2}\mu_{u}^{2} + \mu_{\pm}^{2})^{-1}$$
 and $b_{d}^{\pm} = (z^{2}\mu_{d}^{2} + \mu_{\pm}^{2})^{-1}$

 $\sigma_{\text{SIDIS}} = \sigma_{\text{DIS}} \cdot \sum e_i^2 [q_i(x, Q^2) D_i(z)] \cdot b e^{-bp} \tau^2 \{1 + A\cos(\varphi) + B\cos(2\varphi)\}$


High energy factorization

Seemed to work at pre upgrade JLab

Quarks & Fragmentation Function Transverse Momentum

 $b \rightarrow b_{q}^{\pm} (b_{u}^{\pm} \& b_{d}^{\pm}), \text{ and } b_{q}^{\pm} = (z^{2} \mu_{q}^{2} + \mu_{\pm}^{2})^{-1}$

 $\sigma_{p}^{\pi+} = C[4c_{1} \cdot exp(-b_{u}^{+}P_{t}^{2}) + (d/u)(D^{-}/D^{+})c_{2} \cdot exp(-b_{d}^{-}P_{t}^{2})]$ $\sigma_{p}^{\pi-} = C[4(D^{-}/D^{+})c_{3} \cdot exp(-b_{u}^{-}P_{t}^{2}) + (d/u)c_{4} \cdot exp(-b_{d}^{+}P_{t}^{2})]$ $\sigma_{n}^{\pi+} = C[4(d/u)c_{4} \cdot exp(-b_{d}^{+}P_{t}^{2}) + (D^{-}/D^{+})c_{3} \cdot exp(-b_{u}^{-}P_{t}^{2})]$ $\sigma_{n}^{\pi-} = C[4(d/u)(D^{-}/D^{+})c_{2} \cdot exp(-b_{d}^{-}P_{t}^{2}) + c_{1} \cdot exp(-b_{u}^{+}P_{t}^{2})]$

Fit values:

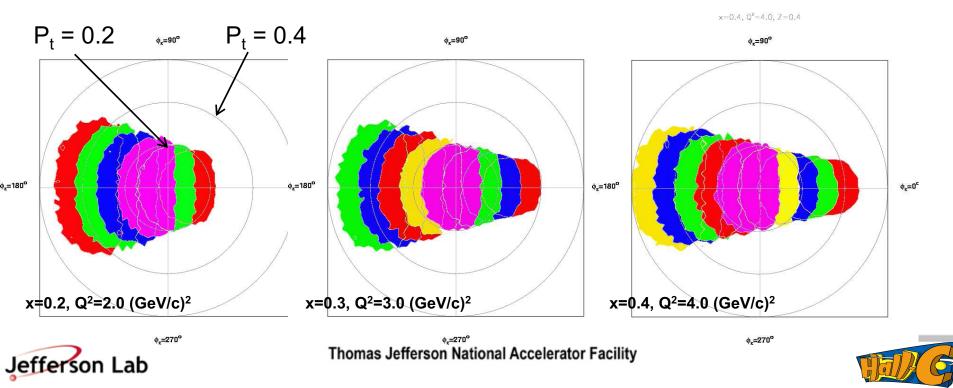
- D⁻/D⁺ = 0.43±0.01; d/u = 0.39±0.03
- $\mu_u^2 = 0.07 \pm 0.03 \text{ GeV}^2$ $\mu_d^2 = -0.01 \pm 0.05 \text{ GeV}^2$

 $\mu_{+}^{2} = 0.18 \pm 0.02 \text{ GeV}^{2} \quad \mu_{-}^{2} = 0.14 \pm 0.02 \text{ GeV}^{2}$

Fit results for agree with HERMES D⁻/D⁺ (0.42), and LO GRV d/u ratio with (0.40)

Fit tends to larger k_t width for u quarks than for d ($\mu_d^2 \sim 0$)

Fragmentation width μ_{+} and μ_{-} are similar (as predicted by Anselmino)


E12-09-017 TMD of SIDIS at 12 GeV

Map transverse momentum dependence of (e,e' π) over range:

 $0.2 < x < 0.5, 2 < Q^2 < 5 \text{ GeV}^2$, $0.3 < z < 0.5 \text{ and } P_t < 0.5 \text{ GeV}$

Combine with CLAS12 data to constrain transverse widths of u/d quarks and fragmentation functions

Obtain some statistics on transverse momentum dependence of (e,e'K) ~60% of data acquired, remainder in late 2018.

E12-09-002 Charge Symmetry Violation Test with SIDIS

Charge Symmetry:

 $m_p \sim m_n$

Energy levels mirror nuclei

p vs n scattering lengths

Charge Symmetry is assumed in parton distribution functions:

 $u^p(x)=d^n(x)$

If Charge Symmetry, then $d(e,e'\pi^+)/d(e,e'\pi^-)$ depends only on fragmentation functions not PDFs

Precision $N\pi^+/N\pi^-$ ratio gives $C(x) = \delta d(x) - \delta u(x)$ where:

 $\delta u(x) = u^p(x) - d^n(x), \ \delta d(x) = d^p(x) - u^n(x)$

Experiment E12-09-002:

Measure $d(e,e'\pi^{-})/d(e,e'\pi^{+})$ to 1% over range of kinematics

 $p(e,e'\pi^+)$, $p(e,e'\pi^-)$ for further factorization tests

Requires careful control of $\pi^+ \pi^-$ detection efficiency, radiative corrections

E12-09-002 Charge Symmetry Violation Test with SIDIS

Measure d(e,e' π ⁻) and d(e,e' π ⁺) yields Y^{π -} and Y^{π +}

$$R_{meas}^{D}(x,z') = \frac{4Y^{\pi^{-}} - Y^{\pi^{+}}}{Y^{\pi^{+}} - Y^{\pi^{-}}}$$

$$D(z)(\frac{5}{2} + R_{meas}^{D}) + CSV(x) = B(x,z)$$

$$D(z) \sim \text{from ratio of favored to unfavored fragmentation functions.}$$

$$B(x,y) \text{ calculated from sea quark PDFs}$$

$$CSV(x) = \frac{-4(\delta d - \delta u)}{3(u_{v} - d_{v})}$$

$$\delta d = d^{p}(x) - u^{n}(x)$$

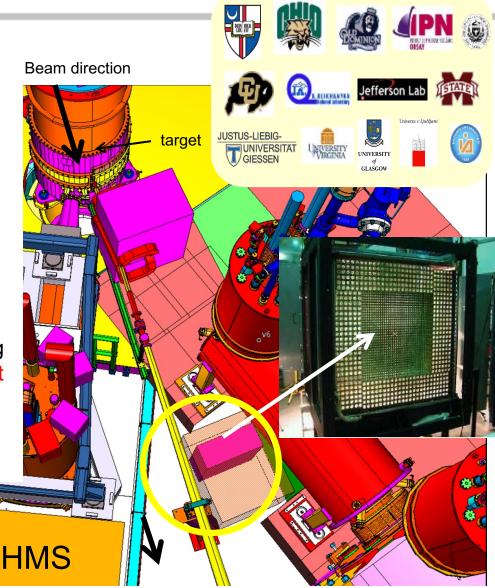
$$\delta u = u^{p}(x) - d^{n}(x)$$
Formalism of Londergan, Pang and Thomas PRD54, 3154 (1996)

Thomas Jefferson National Accelerator Facility

Neutral (e.g. π^0/γ) detector facility in Hall C

 Augment Hall C spectrometers with capability for precision measurements with neutral final states. (L/T separations)

 $p(e,e'\pi^0)$ exclusive and semi-inclusive L/T separated cross sections (E12-13-007)


 $p(e,e'\gamma)$ DVCS (separation of twist-2 and twist-3 contributions) (E12-13-010)

p(γ,γ)**p**, **p**(γ, π^0)**p** Wide angle Compton scattering and π^0 production (E12-14-003, E12-14-005, E12-14-006, C12-17-008)

• Use SHMS spectrometer as platform, replacing first spectrometer magnet with sweeping magnet before calorimeter

• Add 25 msr π^0/γ detector using 1116 PbWO₄ blocks (with temperature-controlled frame)

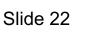
Summary

Recent Hall C results from "6 GeV" Era

Qweak, Hypernuclear, Kaon Form Factor

Spin Asymmetries on the Nucleon (g_1^p, g_2^p, d_2^p) arXiv 1805.08835

Proton/Deuteron F_L structure function – Phys. Rev. C 97, 045204 (2018)


"12 GeV" Era data taking started – Productive first run

Proton Color Transparency, p/d F_2 at high x, EMC, deuteron electrodisintegration Semi-inclusive DIS: Transverse momentum distributions

Future

SIDIS, CSV, Exclusive *K*⁺ production/FF, Pion FF, Pion $\sigma_L \sigma_T$ scaling LHCb pentaquark [$P_c^+(4450)$] photoproduction – detect J/ $\psi \rightarrow e^+e^-$ Neutron spin structure ($A_1^n, g_2^n/d_2^n$) with polarized ³He Neutral Particle Spectrometer, SIDIS with π^0 , DVCS, Wide Angle Compton Scat. + more

Super High Momentum Spectrometer

