

Production asymmetry of open charm mesons within unfavored fragmentation scenario

Rafał Maciuła

Institute of Nuclear Physics PAN, Kraków, Poland

in collaboration with Antoni Szczurek

15th International Workshop on Meson Physics - MESON 2018 7th - 12th June 2018, Kraków, Poland

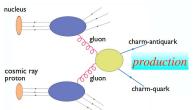
Unfavored fragment 000 Charm asymmetry at LHC 000 Charm at low and high energies

Motivation from the atmosphere...

High-Energy Neutrinos: it is believed that the extremely high-energetic neutrinos observed by IceCube Experiment are of extraterrestial origin.

Atmospheric background: neutrinos produced by the collision of cosmic rays (mostly protons) with the atmosphere (mostly ^{14}N)

- **low-energy component:** conventional flux from decays of π , *K*
- high-energy component: prompt flux from semileptonic decays of *D* mesons
- Charm production at very high energies: crucial for reliable identification of the origin cosmic or atmospheric of high-energy neutrinos detected by IceCube
- Commonly accepted statement: the only dominant partonic mechanism for open charm meson production at high-energies is gg → cc driven by gluon-gluon fusion.

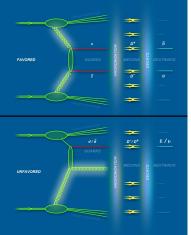


Recently we have performed a critical analysis of uncertainties in the high-energy production of charm (D mesons) in the context of high-energy neutrinos Goncalves, Maciuła, Pasechnik, Szczurek, Phys. Rev. D96 (2017) 094026.

Neutrinos from charm at very forward directions

The high-energy atmospheric neutrinos are produced mostly in very high-energy proton-Air collisions - \sqrt{s} larger than at the LHC

- Leading (favored) scenario: routinely one assumes that D mesons are produced from *c* or \bar{c} fragmentation
- no meson/antimeson production asymmetry at leading-order.
- LHCb observed D⁺/D⁻ asymmetry at forward directions (Phys. Lett. B718 (2013) 902)


Reason: electroweak effects? NLO effects? light quark/antiquark asymmetry in proton?

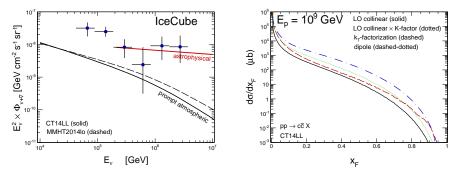
- Very forward production: the region of $x_F > 0.3$ is crucial (not accessible at the LHC !)
- Unknown kinematical regime: configuration with one very small and one very large x's (longitudinal momentum fractions) of gluons.

Subleading (unfavored) fragmentation scenario

We concentrate on the effect of initial quark/antiquark asymmetry in proton and formally on subleading light quark/antiquark fragmentation.

- The subleading fragmentation leads to asymmetry in K^+ and K^- production (SPS, RHIC/BRAHMS). Also $\pi^+\pi^-$ asymmetry was observed.
- We adjust **light-quark** \rightarrow *D* **fragmentation** parameters to describe LHCb D^+/D^- production asymmetry and make predictions for charm production at lower and higher energies and large Feynman-*x*.

It may be...

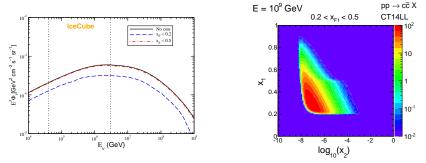

- **helpful** to understand charm production cross section at low energies (favored scenario underestimates experimental data)
- particularly interesting for predictions for the kinematical regions important for production of high-energy neutrinos observed by IceCube.

Maciuła, Szczurek, Phys.Rev. D97, 074001 (2018)

Introduction Atmospheric neutrinos Unfavored fragmentation Charm asymmetry at LHCb Charm at low and high energies 000 000 000

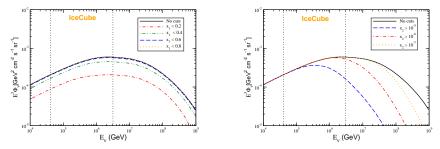
Prompt neutrino flux from charm

Six-year experimental data collected by the IceCube Observatory



- our predictions for **prompt atmospheric neutrino flux** together with a fit for the **astrophysical contribution** from Aartsen et al., Astrophys. J. 833, 3 (2016)
- large experimental uncertainties
- very uncertain theoretical input of charm production cross section in the very forward direction
- different pQCD approaches lead to quite different results

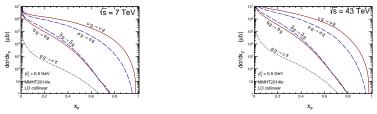
Unknown kinematical regime @ IceCube Observatory


- the dominant contribution to the neutrino flux comes typically from x_F in the region $0.2 < x_F < 0.5$
- within this x_F window, the dominant contribution comes from the region of $x_1 \in (0.2 0.6)$ and $x_2 \in (10^{-8} 10^{-5})$
- in both these regions of longitudinal momentum fractions gluon distribution is poorly constrained

 behavior of the x_F distribution at intermediate x_F is directly associated with the charmproduction at large rapidities, beyond those probed currently by the LHC detectors

Unknown kinematical regime @ IceCube Observatory

- the dominant contribution to the neutrino flux comes typically from x_F in the region $0.2 < x_F < 0.5$
- within this x_F window, the dominant contribution comes from the region of $x_1 \in (0.2 0.6)$ and $x_2 \in (10^{-8} 10^{-5})$
- in both these regions of longitudinal momentum fractions gluon distribution is poorly constrained


 behavior of the x_F distribution at intermediate x_F is directly associated with the charmer production at large rapidities, beyond those probed currently by the LHC detectors

Parton-level calculations within subleading scenario

Light quark/antiquark production:

- we calculate the dominant at large x_F high-energy processes: $ug \rightarrow ug, dg \rightarrow dg, \bar{u}g \rightarrow \bar{u}g$ and $\bar{d}g \rightarrow \bar{d}g$
- the calculations are done in the leading-order collinear factorization approach with a special treatment of minijets at low transverse momenta, as adopted in PYTHIA, by multiplying standard cross section by a somewhat arbitrary suppression factor

$$F_{sup}(p_T) = \frac{p_T^4}{((p_T^0)^2 + p_T^2)^2} \theta(p_T - p_{T,cut}), \text{ where } p_T^0 = 0.5, 1.0, 1.5 GeV$$

- x_F -distributions of light minijet $-u, d, \bar{u}, \bar{d}$ used as an input in unfavored fragmenation
- in the forward (projectile) region, cross sections much larger than for standard $gg \rightarrow c\bar{c}$ mechanism

Unfavored $u, \bar{u}, d, \bar{d} \rightarrow D^i$ parton fragmentation

The subleading FFs fulfill the following flavour symmetry conditions:

$$D_{d\to D^-}(z) = D_{\bar{d}\to D^+}(z) = D^{(0)}(z)$$
.

Similar relations hold for fragmentation of u and \bar{u} to D^0 and \bar{D}^0 mesons. However $D_{q \to D^0}(z) \neq D_{q \to D^+}(z)$ because of the contributions from decays of vector D^* mesons.

- we assume for doubly suppressed fragmentations: $D_{\bar{u}\to D^{\pm}}(z) = D_{u\to D^{\pm}}(z) = 0$
- we are particularly interested in low transverse momentum *D* mesons so we ignore possible DGLAP evolution effects important at somewhat larger scales

We can parametrize the unfavoured fragmentation functions in this phase space region as:

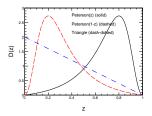
 $D_{q \to D}(z) = A_{\alpha}(1-z)^{\alpha}$ (called *triangle*).

Instead of fixing the uknown A_{α} we will operate rather with the fragmentation probability:

$$P_{q\to D} = \int dz \, A_{\alpha} \left(1-z\right)^{\alpha}$$

and calculate corresponding A_{α} for a fixed $P_{q \to D}$ and α . Therefore in our effective approach we have only two free parameters.

Another simple option one could consider is:


$$D_{q \to D}(z) = P_{q \to D} \cdot D_{\text{Peterson}}(1-z)$$
,

here $P_{q_f \rightarrow D}$ is the only free parameter.

IntroductionAtmospheric neutrinosUnfavored fragmentationCharm asymmetry at LHCbCharm at low and high energies000000000000000

Unfavored $u, \bar{u}, d, \bar{d} \rightarrow D^i$ parton fragmentation

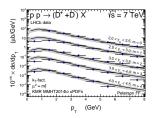
- for heavy quark fragmentation ($c \rightarrow D$) the Peterson FF is peaked at large z
- FF for light quark is expected to be dominant at small z
- this is the case of Peterson fragmentation function reflected with respect to z = 1/2
- we use such a functions purely phenomenologically to test uncertainties related to the shape of the a priori unknown FF

In addition to the direct fragmentation (given by $D^{(0)}(z)$) there are also contributions with intermediate vector D^* mesons. Then the chain of production of charged D mesons is:

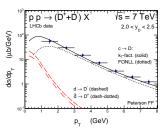
$$\bar{u} \to D^{*,0} \to D^+$$
 (forbidden), $u \to \bar{D}^{*,0} \to D^-$ (forbidden),
 $\bar{d} \to D^{*,+} \to D^+$ (allowed), $d \to D^{*,-} \to D^-$ (allowed).

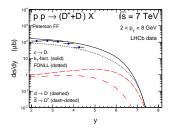
In reality the first two chains are not possible as the decays of corresponding vector mesons $(D^{*,0}$ and $\overline{D}^{*,0})$ are forbidden by lack of phase space.

Including both direct and resonant contributions the combined fragmentation function of light quarks/antiquarks to charged *D* mesons can be written as:


$$D^{\rm eff}_{d/\bar{d}\rightarrow D^{\mp}}(z) = D^0_{d/\bar{d}\rightarrow D^{\mp}}(z) + P_{\mp\rightarrow\mp}\cdot D^1_{d/\bar{d}\rightarrow D^{*,\mp}}(z)\;.$$

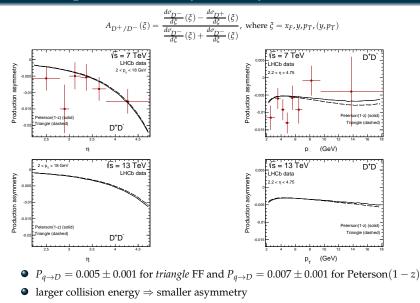
The decay branching ratios can be found in PDG and is $P_{\pm \to \pm} = 0.323$.




IntroductionAtmospheric neutrinosUnfavored fragmentationCharm asymmetry at LHCbCharm at low and high energies000000000000000

LHCb charm data and theory predictions

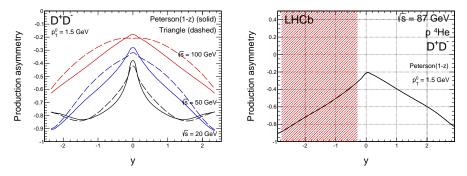
- to calculate asymmetry we have to include dominant contribution from conventional $c/\bar{c} \rightarrow D/\bar{D}$ fragmentation
- the LO pQCD calculation is not reliable in this context
- in the following the conventional contribution is calculated within the k_T -factorization approach
- such an approach seems consistent with collinear next-to-leading order approach FONLL
- at high energies the subleading contribution seems to be negligible, except of very small *p_T*'s and very large rapidities



Introduction

000

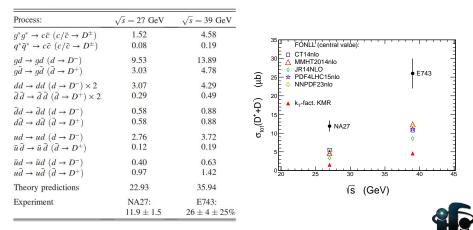
Atmospheric neutrinos Unfavored fragmentation Charm asymmetry at LHCb Charm at low and high energies


D^+/D^- production asymmetry at the LHCb

IntroductionAtmospheric neutrinosUnfavored fragmentationCharm asymmetry at LHCbCharm at low and high energies000000000000000

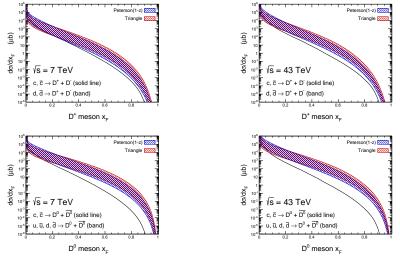
Large asymmetries at low-energies

Here we include all partonic processes with light quark/antiquark in the final state.


- asymmetry at the lower energies is much larger than that for the LHC energies
- even at midrapidity $y \approx 0$ we predict sizeable asymmetries
- our rough predictions could be checked at SPS , RHIC or at fixed target LHCb.
- it would allow to better pin down the rather weakly constrained so far $D_{q \to D}(z)$

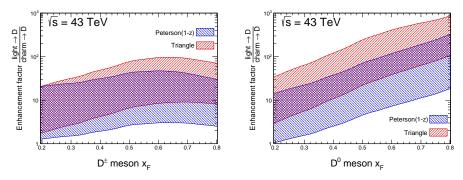
Introduction	Atmospheric neutrinos	Unfavored fragmentation	Charm asymmetry at LHCb	Charm at low and high energies
				0000

Low-energy disagreement


• dominant at high-energy $gg \rightarrow c\bar{c}$ mechanism gives only 13% and 18% for $\sqrt{s} = 27$ and 39 GeV, respectively and strongly underestimates the NA27 and E743 data

• the discussed by us mechanism of subleading fragmentation leads to enhanced production of *D* mesons at lower energies.

Very-high energies



Unfavored fragmentation mechanism may be very important for high-energy neutrinos!

IntroductionAtmospheric neutrinosUnfavored fragmentation
000Charm asymmetry at LHCb
000Charm at low and high energies
000

Consequences for prompt neutrino flux

Large enhancement of the cross section at large x_F

• at $\sqrt{s} = 43$ TeV for $x_F \sim 0.5$ the cross section for charged mesons $(D^+ + D^-)$ is 3 - 15 times bigger than for conventional approach while the cross section for neutral mesons $(D^0 + D^0)$ is 20 - 200 times bigger.

Introduction	Atmospheric neutrinos	Unfavored fragmentation	Charm asymmetry at LHCb	Charm at low and high energies
				0000

Conclusions

- We have made critical analysis of charm production in the Earth's atmosphere.
- Present standard, rather unsure, approach leaves room for extraterrestial neutrinos.
- By analogy to *K*⁺, *K*⁻ production we have considered a possibility of unfavoured fragmentation (fragmentation induced by light quarks/antiquarks)
- The initial parton asymmetry leads then to D/\bar{D} asymmetry.
- We have adjusted parameters of the subleading fragmentation to describe the LHCb D^+/D^- asymmetry.
- Huge asymmetries have been predicted for small energies and/or large Feynman-x. Fixed-target LHCb experiment and NA61 experiment at SPS could look at this !
- The subleading fragmentation dominates over $c \rightarrow D$ or fragmentation at low energies. And explains missing strength !
- We find large contribution of the subleading fragmentation to large-*x*_{*F*} region also at very high collision energies, relevant for high-energy neutrinos measured by IceCube.
- Can the new mechanism explain the IceCube high-energy data requires further critical analysis?
- NLO, electroweak and meson cloud corrections must be included in a future in a consistent manner !

