Contribution ID: 141 Type: poster

Low-energy $K^{-12}C \rightarrow \Lambda$ p R correlated production studies by AMADEUS

Saturday, 9 June 2018 14:30 (1:30)

Collaboration

Abstract content

The measurement of the K^- multi-nucleon absorptions branching ratios and low-energy cross sections in both the Λp and $\Sigma^0 p$ channels are performed by the AMADEUS collaboration, exploiting the low-momentum K^- ($p_K \sim 127~{\rm MeV/c}$) beam produced at the DA ΦNE collider. The KLOE 2004-2005 data are analyzed by reconstructing the Λp final state produced by the K^- interactions with the inner wall of the KLOE drift chamber, which is an almost pure carbon target. Such measurements are fundamental to investigate the in-medium modification of the K^- potential, which is attractive in-medium due to the partial restoration of chiral symmetry and whose behaviour in the KbarN subthreshold region is theoretically debated. Possible existence of Kbar-multinucleon bound state, whose properties are related to the controversial $\Lambda(1405)$ nature, is also experimentally debated. In kaon induced reaction the exotic state formation overlaps with the multi-absorption processes over a broad range of phase space rendering their measurements mandatory. In this work the yields of the K^- two and three nucleon absorptions (2NA and 3NA) are measured with unprecedented accuracy. The signal emitted by the intermediate formation of the exotic K^- pp bound state, decaying through the Λp channel, is also critically investigated.

Primary author(s): DEL GRANDE, Raffaele (LNF-INFN)

Presenter(s): DEL GRANDE, Raffaele (LNF-INFN)

Session Classification: Poster Session