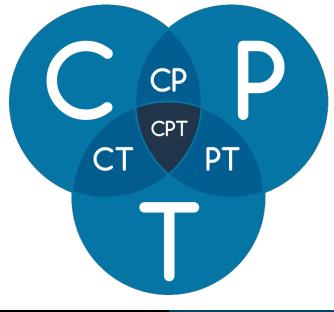
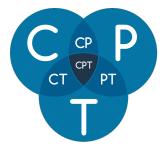
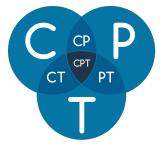
Search for symmetry violating η decays

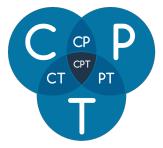

Cristina Collicott

MESON 2018

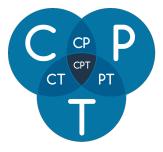

< - 12 ▶

э

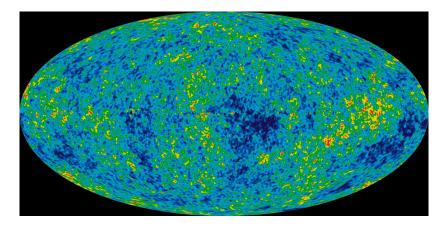

Fundamental Symmetries


• Violation of C, P, and T in weak interactions

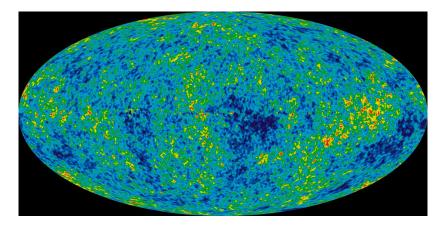
- Violation of C, P, and T in weak interactions
- Strong/EM/Gravity seem to be C/P/T invariant


- Violation of C, P, and T in weak interactions
- Strong/EM/Gravity seem to be C/P/T invariant
- all CPT-violation tests are consistent with zero

- Violation of C, P, and T in weak interactions
- Strong/EM/Gravity seem to be C/P/T invariant
- all CPT-violation tests are consistent with zero
- KM mechanism provides an elegant inclusion of CP violation into the SM (three mixing angles and one CP-violating complex phase)


СР	D
СРТ	
CT P	

- Violation of C, P, and T in weak interactions
- Strong/EM/Gravity seem to be C/P/T invariant
- all CPT-violation tests are consistent with zero
- KM mechanism provides an elegant inclusion of CP violation into the SM (three mixing angles and one CP-violating complex phase)
- All measured CP violation has been explained with this mechanism


What is the problem?

What is the problem?

The (observable) Universe is matter dominated...

What is the problem?

The (observable) Universe is matter dominated... SM prediction for matter/antimatter is too small

There are **many** ongoing searches (B^0 mesons, Kaons, ...) for symmetry violating modes at facilities world wide (BaBar/Belle/...)

There are **many** ongoing searches (B^0 mesons, Kaons, ...) for symmetry violating modes at facilities world wide (BaBar/Belle/...)

We propose to search for the decays:

•
$$\eta
ightarrow 3\gamma$$
 – C violating

with the Crystal Ball at MAMI

There are **many** ongoing searches (B^0 mesons, Kaons, ...) for symmetry violating modes at facilities world wide (BaBar/Belle/...)

We propose to search for the decays:

- $\eta \rightarrow 3\gamma$ C violating
- $\eta \to \pi^0 \gamma$ C violating

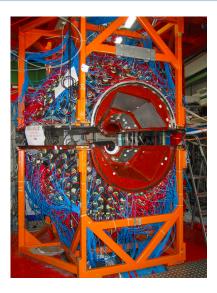
with the Crystal Ball at MAMI

There are **many** ongoing searches (B^0 mesons, Kaons, ...) for symmetry violating modes at facilities world wide (BaBar/Belle/...)

We propose to search for the decays:

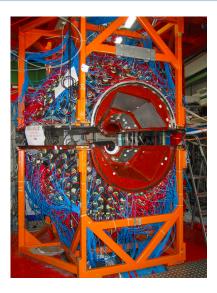
- $\eta \rightarrow 3\gamma$ C violating
- $\eta \to \pi^0 \gamma~$ C violating
- $\eta \rightarrow 4\pi^0$ CP violating

with the Crystal Ball at MAMI


Existing Upper Limits (UL)

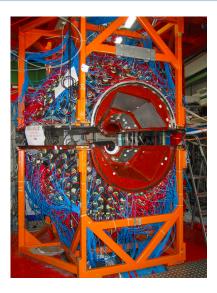
Crystal Ball at AGS

$$egin{aligned} &(\eta o 3\gamma) &< 4 imes 10^{-5} \ &(\eta o \pi^0 \gamma) < 9 imes 10^{-5} \ &(\eta o 4\pi^0) < 6.9 imes 10^{-7} \end{aligned}$$

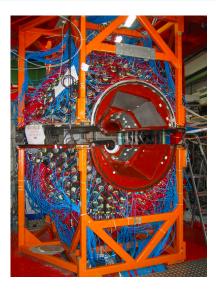


Determined from $3 imes 10^7 \eta$ Produced via $(\pi^- p o \eta n)$ **KLOE** at DAFNE $(\eta
ightarrow 3\gamma) < 1.6 imes 10^{-5}$ Determined from $1.8 \times 10^7 \eta$ Produced via ($\phi \rightarrow \eta \gamma$)

Overview:


• MAMI: 1.6 GeV e⁻ accelerator

Overview:


• MAMI: 1.6 GeV e⁻ accelerator

 $\bullet ~\gamma$ beam via Bremsstrahlung

Overview:

- MAMI: 1.6 GeV e⁻ accelerator
- γ beam via Bremsstrahlung
- 10 cm liquid H₂ target η produced: $\gamma p \rightarrow \eta p$

Overview:

- MAMI: 1.6 GeV e⁻ accelerator
- γ beam via Bremsstrahlung
- 10 cm liquid H₂ target η produced: $\gamma p \rightarrow \eta p$
- Crystal Ball and TAPS
 - excellent γ reconstruction!
 - large angular coverage (ideal for high multiplicity final states, $\eta \rightarrow 4\pi^0$)

η beamtimes in A2

Two beamtimes in 2007/2009

Run I - 2007

- E-MAMI = 1508 MeV
- 5 cm LH₂ target

Run II - 2009 • E-MAMI = 1557 MeV

• 10 cm LH₂ target

Total combined η mesons produced via ($\gamma p \rightarrow \eta p$)

$$\eta = (6.23 \pm 0.10) \times 10^7$$

 $^{*}\#\eta$ determined from an average between $\eta
ightarrow 3\pi^{0}$ and $\eta
ightarrow 2\gamma$

Event selection

- Final state # of photons (3/8)
- Kinematic fit (cut on decay, anti-cut on background)
- Additional kinematic cuts, if necessary

Event selection

- Final state # of photons (3/8)
- Kinematic fit (cut on decay, anti-cut on background)
- Additional kinematic cuts, if necessary

To determine a branching ratio, we apply the following steps:

Peaking bkgs are subtracted

Smooth bkgs are parameterized

Event selection

- Final state # of photons (3/8)
- Kinematic fit (cut on decay, anti-cut on background)
- Additional kinematic cuts, if necessary

To determine a branching ratio, we apply the following steps:

Peaking bkgs are subtracted

Apply fit to data (signal + bkg)

Smooth bkgs are parameterized

Extract the number of signal events

Event selection

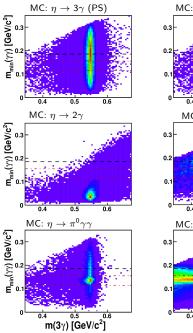
- Final state # of photons (3/8)
- Kinematic fit (cut on decay, anti-cut on background)
- Additional kinematic cuts, if necessary

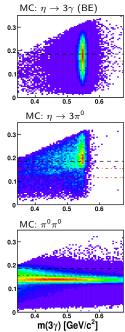
To determine a branching ratio, we apply the following steps:

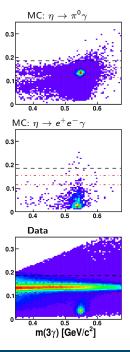
Peaking bkgs are subtracted

Apply fit to data (signal + bkg)

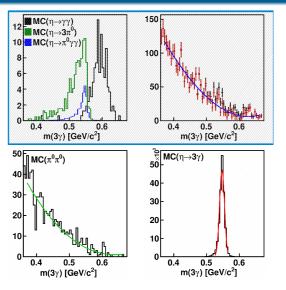
Correct number of signal events by det-eff, ϵ

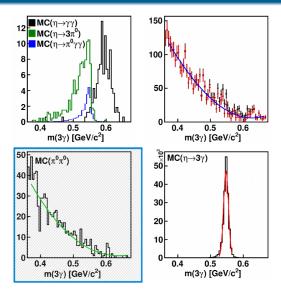

Smooth bkgs are parameterized



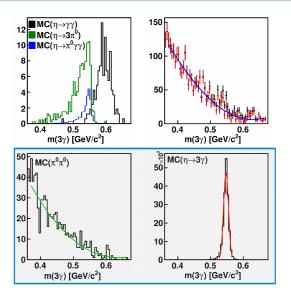

Extract the number of signal events

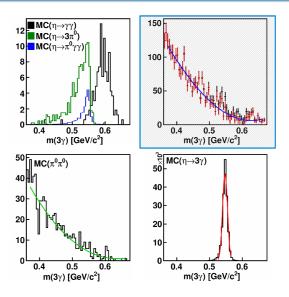
Calculate BR from signal events and total η



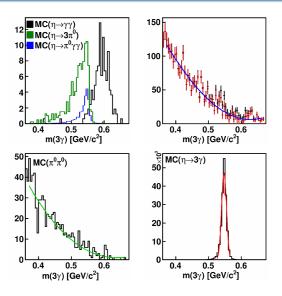


Cristina Collicott

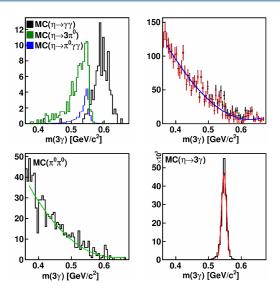

Fitting example, $\eta ightarrow 3\gamma$


• Subtract peaking bkgs

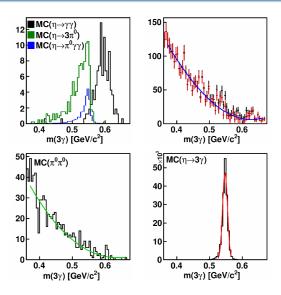
- Subtract peaking bkgs
- Parametrize smooth bkgs


- Subtract peaking bkgs
- Parametrize smooth bkgs
- Smooth bkg + MC of signal form fitting function

- Subtract peaking bkgs
- Parametrize smooth bkgs
- Smooth bkg + MC of signal form fitting function
- Apply fit to (MC subtracted) experimental data

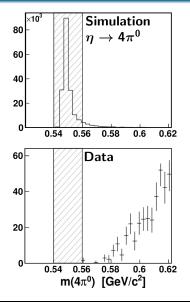

Analysis

Fitting example, $\eta ightarrow 3\gamma$

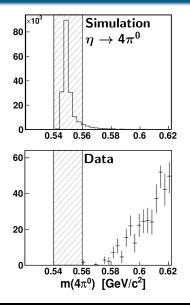

 Detection efficiency, ε (Run I) ε = 8.67% (Run II) ε = 8.79%

Analysis

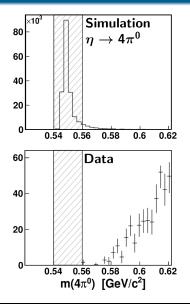
- Detection efficiency, *ε* (Run I) *ε* = 8.67% (Run II) *ε* = 8.79%
- Extract # of signal events (Run I) #= -1 ± 16 (Run II) #= 0 ± 16 total < 424 decays (90% CL)


Analysis

- Detection efficiency, *ε* (Run I) *ε* = 8.67% (Run II) *ε* = 8.79%
- Extract # of signal events


 (Run I) #= -1 ± 16
 (Run II) #= 0 ± 16
 total < 424 decays (90% CL)
- Extract branching ratio $BR < 6.8 \times 10^{-6} \ \mbox{(90\% CL)}$

Fitting example, $\eta ightarrow 4\pi^0$


• Detection efficiency, ϵ (Run I) $\epsilon = 22.6\%$ (Run II) $\epsilon = 21.8\%$

Fitting example, $\eta ightarrow 4\pi^0$

- Detection efficiency, ϵ (Run I) $\epsilon = 22.6\%$ (Run II) $\epsilon = 21.8\%$
- Extract # of signal events total < 2.44 (90% CL)

Fitting example, $\eta ightarrow 4\pi^0$

- Detection efficiency, ϵ (Run I) $\epsilon = 22.6\%$ (Run II) $\epsilon = 21.8\%$
- Extract # of signal events total < 2.44 (90% CL)
- Extract branching ratio $\ensuremath{\text{BR}}\xspace < 1.8 \times 10^{-7}$ (90% CL)

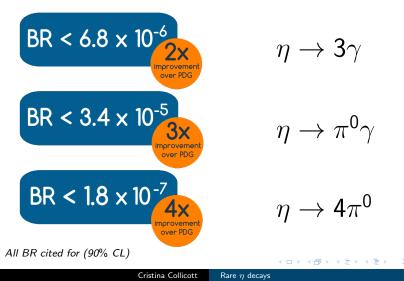
Summary of new upper limits on η

New measurements of symmetry violating η decays for:

 $\eta
ightarrow 3\gamma$

Summary of new upper limits on η

New measurements of symmetry violating η decays for:



 $\eta
ightarrow 3\gamma$

 $\eta \to \pi^0 \gamma$

Summary of new upper limits on η

New measurements of symmetry violating η decays for:

Symmetry violation studies allow for new physics searches (BSM)

< 17 ▶

Summary

Symmetry violation studies allow for new physics searches (BSM)

The Crystal Ball experiment at MAMI can help contribute to these searches in the light meson sector

Summary

Symmetry violation studies allow for new physics searches (BSM)

The Crystal Ball experiment at MAMI can help contribute to these searches in the light meson sector

We've performed a new search on the neutral decays of the $\boldsymbol{\eta}$

- $\eta \rightarrow 3\gamma$ C violating
- $\eta \to \pi^0 \gamma$ C violating
- $\eta
 ightarrow 4\pi^0$ CP violating

2-4 \times Improvement on the existing BR-UL

Future experiments

Ongoing experiment in A2 will produce high statistics π^0 data set, produced via $(\gamma \rho \rightarrow \pi^0 \rho)$.

Projected $(\gamma p \rightarrow \pi^0 p)$ on tape about 5×10^9

Interesting to investigate:

• $\pi^0 \rightarrow 3\gamma$ – C violating

•
$$\pi^0
ightarrow 4\gamma$$
 – rare

SM - η

SM

D.A. Dicus/JEF proposal, Estimate of the rate of the decay $\eta
ightarrow 3\gamma$

$$rac{\Gamma(\eta
ightarrow 3\gamma)}{\Gamma(\eta
ightarrow 2\gamma)} = 10^{-24}.$$

SM

A. Kupsc and A. Wirzba, Tests of fundamental symmetries in η mesons, 2011

$$\Gamma(\eta
ightarrow 4\pi^0) \leq 10^{-10}$$

$$\Gamma(\eta' \to 4\pi^0) \le 10^{-8}.$$

э

∃ > _

A 10

SM and BSM theories - π^0

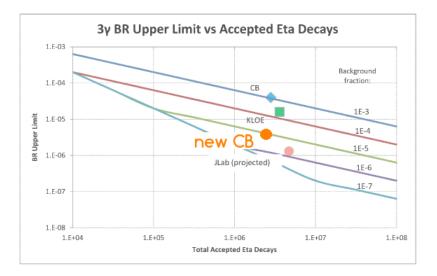
SM: Charge conjugation violation \rightarrow strong interactions

F.A. Berends, The T violating decay of $\pi^0
ightarrow 3\gamma$, 1965

$$rac{\Gamma(\pi^0
ightarrow 3\gamma)}{\Gamma(\pi^0
ightarrow 2\gamma)} = 10^{-6}.$$

SM: Charge conjugation violation \rightarrow weak interactions

D.A. Dicus, Estimate of the rate of the rare decay $\pi^0 \to 3\gamma,\,1975$


$$rac{\Gamma(\pi^0
ightarrow 3\gamma)}{\Gamma(\pi^0
ightarrow 2\gamma)} = 10^{-31\pm 6}.$$

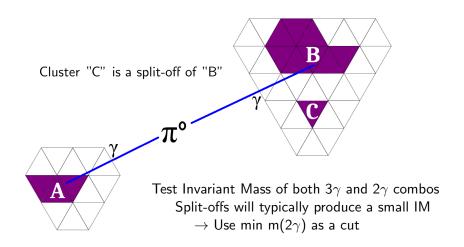
BSM: non-commutative quantum electrodynamics (NCQED)

Grosse and Liao, Anomalous C-violating Three Photon Decay of the Neutral Pion in Non-commutative Quantum Electrodynamics, 2001

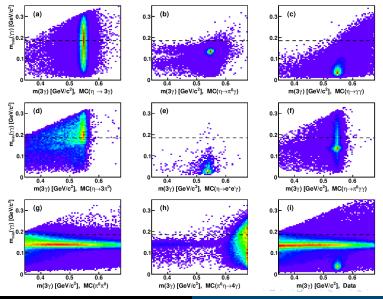
$$\frac{\Gamma(\pi^0 \to 3\gamma)}{\Gamma(\pi^0 \to 2\gamma)} = 10^{-21}.$$

For the JLab folks...

Analysis: $\eta \rightarrow 3\gamma$ and $\eta \rightarrow \pi^0 \gamma$

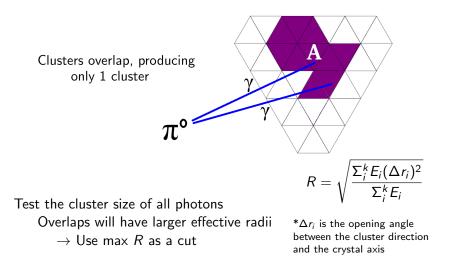

Difficult analysis!

Low BR for forbidden decays ... Many backgrounds to consider

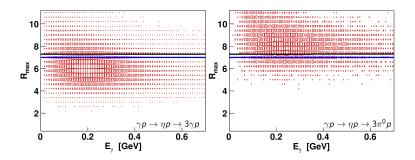

Some initial considerations

- 3 cluster, or 4 cluster (with recoil) final state
- γ s only in CB (better charged mode suppression: $\eta
 ightarrow e^+e^-\gamma)$
- backgrounds from split-offs ($\eta
 ightarrow 2\gamma$ + split-off)
- backgrounds from missed γ ($\gamma p \rightarrow 2\pi^0 p$ + missed γ)
- backgrounds from overlaps $(\eta
 ightarrow 3\pi^0 + ext{overlaps})$

Analysis: Split-offs

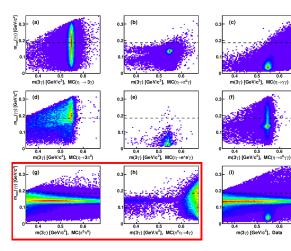

Analysis: $m(2\gamma) v. m(3\gamma)$

Cristina Collicott


Rare η decays

Analysis: Overlaps

Analysis: Effective radius, R


Demonstrated previously* that a cut on R can be an effective tool for suppressing $\eta\to 3\pi^0$ background

*B.M.K Nefkens et al., Phys. Rev. C 72 035212 (2005)

< □ > < 向 >

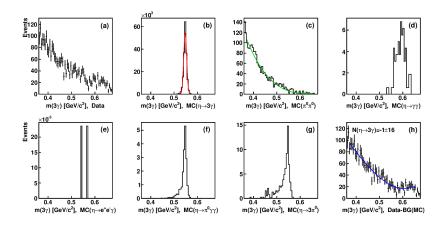
Analysis: Parametrization of backgrounds

 $\gamma p \rightarrow \pi^0 \eta \rightarrow 4\gamma p$ has a very steep shape (makes parametrization difficult)

 \rightarrow Place cut at threshold

Analysis: Summary of cuts, $\eta \rightarrow 3\gamma$

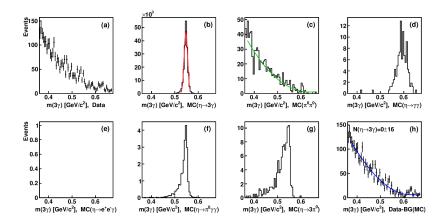
Decay	Kinematic fitting cuts
$\eta ightarrow 3\gamma$	$CL(\gamma m{p} o \eta m{p} o 3\gamma m{p}) > 0.1$
	${\sf CL}(\gamma ho o \pi^0 ho o 2\gamma ho) < 10^{-5}$
	CL($\gamma m{p} ightarrow \eta m{p} ightarrow 2 \gamma m{p}$) $< 10^{-5}$
	$CL(\gamma m{ ho} o \pi^0 \pi^0 m{ ho} o 4\gamma m{ ho}) < 10^{-5}$
	CL($\gamma ho o \pi^0 \eta ho o 4 \gamma ho$) $< 10^{-5}$
	Additional cuts
	All γ clusters in CB, no PID hits
	${\sf m}_{\it min}(\gamma\gamma)>0.185~{ m GeV/c^2}$
	Maximum cluster effective radius, R < 7.0
	${\sf E}_\gamma <$ 940 MeV


э

_ र ≣ ≯

< 1 →

(Run I)


Results: $m(3\gamma) \quad \eta \rightarrow 3\gamma$ selection criteria

< 1 →

(Run II)

Results: $m(3\gamma) \quad \eta \rightarrow 3\gamma$ selection criteria

< /□ > < 3

-

Results: BR($\eta \rightarrow 3\gamma$)

Run I: $N(\eta \rightarrow 3\gamma) = -1 \pm 16$ Run II: $N(\eta \rightarrow 3\gamma) = 0 \pm 16$ $\epsilon = 0.0867$ $\epsilon = 0.0879$

The number of $\eta\to 3\gamma$ decays produced in Run I and Run II is less than 424 at the 90% CL.

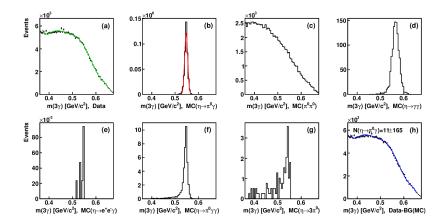
Total number of η produced was 6.23×10^7 , giving a new UL:

 $BR(\eta \rightarrow 3\gamma) \leq 6.8 \times 10^{-6}$ at the 90% CL,

improving the current PDG value, 1.6×10^{-7} , by a factor >2.

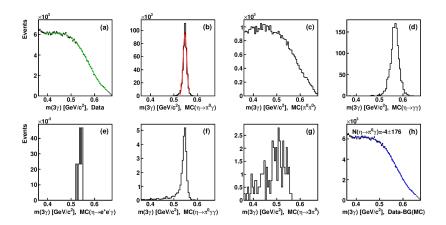
Analysis: Summary of cuts, $\eta o \pi^0 \gamma$

Decay	Kinematic fitting cuts
$\eta \to \pi^0 \gamma$	$CL(\gamma p o \eta p o 3\gamma p) > 0.15$
	${\sf CL}(\gamma ho o \pi^0 ho o 2\gamma ho) < 10^{-5}$
	CL($\gamma m{p} ightarrow \eta m{p} ightarrow 2 \gamma m{p}$) $< 10^{-5}$
	$CL(\gamma oldsymbol{p} o \pi^0 \pi^0 oldsymbol{p} o 4\gamma oldsymbol{p}) < 10^{-5}$
	CL($\gamma m{p} ightarrow \pi^0 \eta m{p} ightarrow 4 \gamma m{p}$) $< 10^{-5}$
	Additional cuts
	All γ clusters in CB, no PID hits
	$0.115 < m_{\it min}(\gamma\gamma) > 0.155~{ m GeV/c^2}$
	Maximum cluster effective radius, R $<$ 7.3
	${\sf E}_\gamma <$ 940 MeV


э

-∢ ≣⇒

< 同 ▶


(Run I)

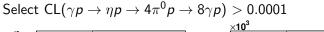
Results: m(3 γ) $\eta ightarrow \pi^0 \gamma$ selection criteria

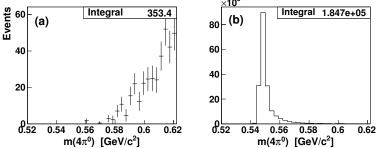
- 4 同 ト 4 ヨ ト 4 ヨ ト

Results: m(3 γ) $\eta \rightarrow \pi^0 \gamma$ selection criteria (Run II)

Results: BR($\eta \to \pi^0 \gamma$)

Run I: $N(\eta \to \pi^0 \gamma) = 11 \pm 165$ **Run II**: $N(\eta \to \pi^0 \gamma) = -4 \pm 176$ $\epsilon = 0.200$ $\epsilon = 0.185$


The number of $\eta \to \pi^0 \gamma$ decays produced in Run I and Run II is less than 2125 at the 90% CL.


Total number of η produced was 6.23×10^7 , giving a new UL:

 $BR(\eta \to \pi^0 \gamma) \le 3.4 \times 10^{-5}$ at the 90% CL,

improving the current PDG value, 9×10^{-5} , by a factor roughly 3.

Analysis: $\eta \rightarrow 4\pi^0$

The number of $\eta \rightarrow 4\pi^0$ decays produced in Run I ($\epsilon = 0.226$) and Run II ($\epsilon = 0.218$) is less than 2.44 at the 90% CL.

$$BR(\eta \to 4\pi^0) \le 1.8 \times 10^{-7}$$
 at the 90% CL,

improving the current PDG value, 6.9×10^{-7} , by a factor of 4.

Summary

New measurements of symmetry violating $\boldsymbol{\eta}$ decays for:

 $BR(\eta \rightarrow 3\gamma) \le 6.8 \times 10^{-6}$ at the 90% CL, improving the current PDG value, 1.6×10^{-7} , by a factor >2.

 $BR(\eta \to \pi^0 \gamma) \le 3.4 \times 10^{-5}$ at the 90% CL, improving the current PDG value, 9×10^{-5} , by a factor roughly 3.

 $BR(\eta \rightarrow 4\pi^0) \leq 1.8 \times 10^{-7}$ at the 90% CL, improving the current PDG value, 6.9×10^{-7} , by a factor of 4.

Paper in prep

Funding: Carl Zeiss foundation (Thanks)