

Discrete symmetries studies at KLOE-2

Daria Kisielewska on behalf of the KLOE-2 Collaboration

MESON 2018 Kraków 11.06.2018

Outline

- KLOE/KLOE-2 @ DAΦNE
- K_S semileptonic charge asymmetry
- Direct test of T and CPT in neutral kaon transitions
- Search for a CP violating decay $K_S
 ightarrow \pi^0 \pi^0 \pi^0$
- Summary

KLOE/KLOE-2 @ DA ONE

DAΦNE e⁺e⁻ collider located in Frascati,

two alternate interaction regions (one for KLOE),

•
$$\sqrt{s} \approx m_{\Phi}$$
, $BR(\Phi \rightarrow K_L K_S) = 34\%$,

- KLOE has collected ~ 2.5fb⁻¹ of data,
- KLOE-2 goal: L(acquired)>5 fb⁻¹
- KLOE-2 data-taking campaign completed on 30th March & collected 5.5 fb⁻¹

 $\label{eq:KLOE} \begin{array}{l} {\sf KLOE-2 \mbox{ data sample: 8fb^{-1} \Rightarrow 2.4 \times 10^{10} \mbox{ } \phi \mbox{ mesons produced,}} \\ {\sf the largest sample ever collected at the } \phi(1020) \mbox{ peak} \end{array}$

The KLOE/KLOE-2 detector

QCALT (scintillator tiles and fibers with SiPM read-out) 2 new calorimeters to improve acceptance at low polar angles and for γs from KL->3pi0 decays inside the DC volume

$$A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^- e^+ \nu) - \Gamma(K_{S,L} \to \pi^+ e^- \bar{\nu})}{\Gamma(K_{S,L} \to \pi^- e^+ \nu) + \Gamma(K_{S,L} \to \pi^+ e^- \bar{\nu})}$$

$$= 2 \left[Re\left(\epsilon_K \right) \pm Re\left(\delta_K \right) - Re\left(y \right) \pm Re\left(x_- \right) \right]$$

$$\xrightarrow{\text{T violation in } K^0 \bar{K^0} \text{ mixing}}$$

$$\xrightarrow{\text{CPT violation in } \Delta S = \Delta Q}$$

$$\xrightarrow{\text{CPT violation in } \Delta S \neq \Delta Q}$$

$$= 2 \left[Re\left(\epsilon_K \right) \pm Re\left(\delta_K \right) - Re\left(y \right) \pm Re\left(x_- \right) \right]$$

$$(A_{5} - A_{L})/4 = Re(\delta_{K}) + Re(x_{-}) = (-0.5 \pm 2.5) \times 10^{-3}$$

 $(A_{5} + A_{L})/4 = Re(\epsilon_{K}) - Re(y) = (1.2 \pm 2.5) \times 10^{-3}$
input from other experiments [PLB 444 (1998) 52]

11.06.2018 6 / 17

Charge asymmetry measurement for K_S

11.06.2018 7 / 17

Charge asymmetry measurement for K_S

Time of flight selection

$$\delta_t(X) = t_{cl} - \frac{L}{c\beta(m_X)}$$
$$\delta_t(a, b) = \delta_t(a) - \delta_t(b)$$

-2.5.2.5-2-1.5-1-0.5 0 0.5 1 1.5 2

δ_t(e) [ns]

-0.5

-2.52.5-2-1.5-1-0.5 0 0.5

δ,(e) [ns]

1 MC KE3

- Fit of M²(e) distribution varying MC normalizations of signal and bkg contributions
- Control sample: $K_L \to \pi e \nu$ close to IP tagged by $K_S \to \pi^0 \pi^0$
- track to EMC cluster and TOF efficiency correction from data c.s
- Due to some discrepancies between data and MC on momentum resolution the measured particle momentum components have been smeared. Parameters were tuned on c.s

$$\downarrow \phi \to K_S K_L \to \pi^0 \pi^0 \pi e \nu$$

Efficiency (%)	$K_S \rightarrow \pi^- e^+ \nu$	$K_S \rightarrow \pi^+ e^- \bar{\nu}$	
trigger and event classification (ϵ_{TEC})	99.80±0.02	99.80±0.02	
K_S tagging (ϵ_{TAG})	36.54 ± 0.05	36.67 ± 0.05	
kinematical cuts (ϵ_{KC})	75.60 ± 0.08	75.62 ± 0.07	
Track to Cluster Association (ϵ_{TCA})	42.22 ± 0.08	41.85 ± 0.08	
Time of Flight (ϵ_{TOF})	64.03 ± 0.19	67.96 ± 0.18	
Fit range (ϵ_{FR})	99.16 ± 0.03	99.17 ± 0.02	

Contribut	Systematic uncertainty (10 ⁻³)		
Trigger and event classification	σ_{TEC}	0.28	
Tagging and preselection	E _{clu} (crash)	0.55	
"	β^*	0.67	
"	Z _{vtx}	0.01	
"	ρ _{vtx}	0.05	
"	α	0.46	
"	$M_{inv}(\pi,\pi)$	0.20	
Time of flight selection	$\delta_t(\pi,\pi)$	0.71	
"	$\delta_t(e,\pi)$ vs $\delta_t(\pi,e)$	0.87	
"	$\delta_t(e)$ vs $\delta_t(\pi)$	1.82	
Momenta smearing	σ_{MS}	0.58	
Fit procedure	σ _{HBW} 0.61		
"	Fit range	0.49	
Total		2.6	

• The new KLOE A_S analysis has been finalized with 1.63 fb⁻¹ data sample

 $A_S = (-4.8 \pm 5.7_{stat} \pm 2.6_{syst}) \times 10^{-3}$

• Combined with the previous KLOE analysis:

$$A_S = (-3.7 \pm 5.0_{stat} \pm 2.6_{syst}) \times 10^{-3}$$

$$(A_S - A_L)/4 = Re(\delta_K) + Re(x_-) = (-1.7 \pm 1.4) \times 10^{-3}$$

$$(A_S + A_L)/4 = Re(\epsilon_K) - Re(y) = (-0.1 \pm 1.4) \times 10^{-3}$$

input from other experiments [PDG (2017)]

$$Re(x_{-}) = (-2.0 \pm 1.4) \times 10^{-3}$$
$$Re(y) = (1.7 \pm 1.4) \times 10^{-3}$$

Paper in preparation

Direct test of T and CPT in neutral kaon transitions

Unique direct T and CPT symmetry test with kaons (model independent)
 J. Bernabeu, A. Di Domenico and P. Villanueva-Perez: Nucl.Phys. B 868 (2013) 102, JHEP 10 (2015) 139

• KLOE-2 can do significant tests with L \sim 5fb $^{-1}$

Direct test of T and CPT in neutral kaon transitions

	Reference		T-conjugate		CPT-conjugate	
1.	$K^0 ightarrow K_+$	$(I^-,\pi\pi)$	$K_+ ightarrow K_0$	$(3\pi, I^+)$	$K_+ ightarrow ar{K^0}$	$(3\pi, I^{-})$
2.	$K^0 ightarrow K$	$(I^{-}, 3\pi)$	$K_{-} ightarrow K_{0}$	$(\pi\pi, I^+)$	$K ightarrow ar{K^0}$	$(\pi\pi, I^-)$
3.	$ar{K^0} o K_+$	$(I^+,\pi\pi)$	$K_+ ightarrow ar{K^0}$	$(3\pi, I^{-})$	$K_+ ightarrow K^0$	$(3\pi, I^+)$
4.	$ar{K^0} ightarrow K$	$(I^+, 3\pi)$	$K_{-} ightarrow ar{K^0}$	$(\pi\pi, I^-)$	$K_{-} ightarrow K^{0}$	$(\pi\pi, I^+)$

Example observable of the test

$$R_2(\Delta t) = \frac{P[K^0(0) \to K_-(\Delta t)]}{P[K_-(0) \to K_0(\Delta t)]} \sim \frac{I(I^-, 3\pi^0; \Delta t)}{I(\pi\pi, I^+; \Delta t)}$$

Direct test of T in neutral kaon transitions

First test of T in transitions with neutral kaons (L=1.7 fb⁻¹)

Direct test of CPT in neutral kaon transitions

First test of CPT in transitions with neutral kaons (L=1.7 fb $^{-1}$)

$$R_{2}^{CPT} = \frac{I(I^{-}, 3\pi^{0}; \Delta t)}{I(\pi\pi, I^{-}; \Delta t)} \qquad \qquad \frac{R_{2}^{CPT}(\Delta t >> \tau_{s})}{R_{4}^{CPT}(\Delta t >> \tau_{s})} = 1 - 8Re(\delta_{K}) - 8Re(x_{-}) \\ \approx 1 + 2(A_{L} - A_{S}) \end{cases}$$

Search for a CP violating decay $K_S \rightarrow \pi^0 \pi^0 \pi^0$

- $3\pi^0$ is a pure CP=-1 state; observation of $K_S \rightarrow 3\pi^0$ is an unambiguous sign of CP violation in mixing and/or in decay.
- Standard Model prediction: $BR(K_S \rightarrow 3\pi^0) = 1.9 \times 10^{-9}$
- Best upper limit by KLOE with 1.7 fb⁻¹ (PLB 723 (2013) 54) $BR(K_S \rightarrow 3\pi^0) < 2.6 \times 10^{-8}$ @ 90% CL

SIGNAL

BACKGROUND

- the analysis is based on γ counting and kinematic fit (in the $2\pi^0$ and $3\pi^0$ hypothesis)
- searching for "KL crash" (KL in the EMC) + 6 prompt photons
- Main bckg: K_S → 2π⁰ (4 prompt photons), also used for normalization
- at KLOE-2: Selection criteria hardened to face the larger machine background ~10 times better background rejection
- KLOE-2 data analysis (L=300 pb⁻¹): With the old analysis scheme 1 event selected as a signal: $\Rightarrow Br(K_S \rightarrow 3\pi^0) < 2.5 \times 10^{-7}$ @ 90% CL (preliminary)
- Full KLOE-2 statistics+optimized analysis could reach $\leq 10^{-8}$

Summary

- The study of discrete symmetries with neutral kaons is one of the key issues at KLOE-2 including several high precision tests of CPT and Quantum Mechanics.
- The analysis of the full KLOE data set is in progress:
 - a new measurement of the K_S semileptonic charge asymmetry
 - the analysis for first test of T and CPT in neutral kaon transitions processes is ongoing.
- KLOE/KLOE-2 all together have completed the data-taking and collected about 8 fb^{-1} data at ϕ peak
- The analysis of KLOE-2 data started on several benchmark processes. Among them a preliminary study searching for the CP violating $K_S \rightarrow 3\pi^0$ decay shows the possibility to improve the sensitivity on this BR.

Thank you for your attention