Tests of discrete symmetries in positronium decays with the J-PET detector

Michał Silarski for the J-PET Collaboration
Jagiellonian University

1. Positronium as a probe for fundamental symmetries tests
2. The J-PET detector
3. Potential of the discrete symmetries studies with J-PET
4. Conclusions and outlook

* Positronium as a probe for discrete symmetries tests

- The lightest purely leptonic object
- Eigenstate of the CP operator: e^{+}- state (C eigenstate) bound by a central potential (P eigenstate)

Ps state	τ [ns]	L	S	J	J_{z}	P	C	CP
${ }^{1} \mathrm{~S}_{\mathrm{O}}$ (para-Ps)	$\mathbf{0 . 1 2 5}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	-	+	-
${ }^{3} \mathrm{~S}_{1}$ (ortho-Ps)	142	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{- 1 , 0 , 1}$	$\mathbf{-}$	-	+

$$
\begin{aligned}
& \mathrm{P}\left|P s>=(-1)^{L}\right| P s> \\
& \mathrm{C}\left|P s>=(-1)^{L+S}\right| P s>
\end{aligned}
$$

- Effects due the weak interaction can lead to the violation at the order of 10^{-14}. [M. Sozzi, Discrete Symmetries and CP Violation, Oxford University Press (2008)]
- No charged particles in the final state (radiative corrections very small $2 \cdot 10^{-10}$)
[B. K. Arbic et al., Phys. Rev. A 37, 3189 (1988); W. Bernreuther et al., Z. Phys. C 41, 143 (1988)]
* C tests: search for decays to forbidden photons final state:
[A. Pokraka, A. Czarnecki, Phys. Rev. D 96, 093002 (2017)]

$$
\begin{aligned}
& \mathrm{BR}(\mathrm{oPs} \rightarrow 4 \gamma / \mathrm{oPs} \rightarrow 3 \gamma)<2.6 \cdot 10^{-6} \text { at } 90 \% \mathrm{C} . \mathrm{L} . \\
& \mathrm{BR}(\mathrm{pPs} \rightarrow 3 \gamma / \mathrm{pPs} \rightarrow 2 \gamma)<2.8 \cdot 10^{-6} \text { at } 68 \% \mathrm{C} . \mathrm{L} . \\
& \mathrm{BR}(\mathrm{pPs} \rightarrow 5 \gamma / \mathrm{pPs} \rightarrow 2 \gamma)<2.7 \cdot 10^{-7} \text { at } 90 \% \mathrm{C} . \mathrm{L} .
\end{aligned}
$$

[J. Yang et al., Phys. Rev. A54, 1952 (1996), A.P. Mills, S. Berko, Phyg. Rev. Lett. 18, 420 (1967), P.A. Vetter, S.J. Freedman, Phys. Rev. A66, 052505 (2002)]

* Positronium as a probe for symmetries tests

* Measurement of the expectation value of the symmetry-odd operators
* They are constructed using o-Ps spin (\vec{S}) and the decay photons momentum $\left(\overrightarrow{k_{i}}\right)$ or polarization ($\vec{\varepsilon}_{i}$)
* There is no experimental data for most of the operators
$\left\langle\overrightarrow{\boldsymbol{s}} \cdot\left(\overrightarrow{\boldsymbol{k}}_{\mathbf{1}} \times \overrightarrow{\boldsymbol{k}}_{\mathbf{2}}\right)\right\rangle=0.0026 \pm 0.0031$ (CPTV)
[P.A. Vetter, S.J. Freedman, Phys. Rev. Lett. 91, 263401 (2003)]
$\left\langle\left(\overrightarrow{\boldsymbol{S}} \cdot \boldsymbol{k}_{1}\right)\left[\overrightarrow{\boldsymbol{S}}\left(\overrightarrow{\boldsymbol{k}}_{\mathbf{1}} \times \overrightarrow{\boldsymbol{k}}_{\mathbf{2}}\right)\right]\right\rangle=0.0013 \pm 0.0022(\mathrm{CPV})$
[T. Yamazaki et al., Phys. Rev. Lett. 104 (2010) 083401]

Operator	C	\mathbf{P}	\mathbf{T}	$\mathbf{C P}$	$\mathbf{C P T}$
$\overrightarrow{\boldsymbol{s}} \cdot \overrightarrow{\boldsymbol{k}}_{\mathbf{1}}$	+	-	+	-	-
$\overrightarrow{\boldsymbol{s}} \cdot\left(\overrightarrow{\boldsymbol{k}}_{\mathbf{1}} \times \overrightarrow{\boldsymbol{k}}_{2}\right)$	+	+	-	+	-
$\left(\overrightarrow{\boldsymbol{s}} \cdot \overrightarrow{\boldsymbol{k}}_{\mathbf{1}}\right)\left(\overrightarrow{\boldsymbol{s}} \cdot\left(\overrightarrow{\boldsymbol{k}}_{\mathbf{1}} \times \overrightarrow{\boldsymbol{k}}_{2}\right)\right)$	+	-	-	-	+
$\overrightarrow{\boldsymbol{k}}_{\mathbf{1}} \cdot \vec{\varepsilon}_{2}$	+	-	-	-	+
$\overrightarrow{\boldsymbol{s}} \cdot \vec{\varepsilon}_{\mathbf{1}}$	+	+	-	+	-
$\overrightarrow{\boldsymbol{S}} \cdot\left(\overrightarrow{\boldsymbol{k}}_{\mathbf{2}} \times \vec{\varepsilon}_{\mathbf{1}}\right)$	+	-	+	-	-

$$
\left|k_{1}\right|>\left|k_{2}\right|>\left|k_{3}\right|
$$

[P. Moskal et. al., Acta Phys. Polon. B47 (2016) 509]

* SM prediction: $10^{-10}-10^{-9}$ (photon-photon interactions)

* Tests of the CP symmetry with positronium

* New sources of CP violation needed to explain the matter-antimatter asymmetry
* CPV discovered experimentally so far only for hadrons
* Massive neutrinos suggest CP violation in the leptonic sector (so far not observed)
* Neutrino oscillations studies (e.g. T2K experiment)
* Positronium decay studies

CP-odd operators:

- $\overrightarrow{\boldsymbol{S}} \cdot \overrightarrow{\boldsymbol{k}}_{\mathbf{1}}$
- $\overrightarrow{\boldsymbol{S}} \cdot\left(\overrightarrow{\boldsymbol{k}}_{\mathbf{1}} \times \overrightarrow{\boldsymbol{k}}_{2}\right) \quad$ [M. Mohammed, A Gajos poster]
- $\left(\overrightarrow{\boldsymbol{s}} \cdot \overrightarrow{\boldsymbol{k}}_{1}\right)\left(\overrightarrow{\boldsymbol{s}} \cdot\left(\overrightarrow{\boldsymbol{k}}_{1} \times \overrightarrow{\boldsymbol{k}}_{2}\right)\right)$

- $\overrightarrow{\boldsymbol{k}}_{2} \cdot \overrightarrow{\boldsymbol{\varepsilon}}_{1} \quad$ [J. Raj poster]
- $\vec{S} \cdot \vec{\varepsilon}_{1}$
- $\vec{s} \cdot\left(\vec{k}_{2} \times \vec{\varepsilon}_{1}\right)$

J-PET
 Jagiellonian PET
 ((8)) J-PET

* First PET tomgraph based on plastic scintillators
* Multipurpose detector for fundamental particle physics

192 detection modules arranged in 3 layers (19x7x500 mm ${ }^{3}$ EJ-230 scintillator strips + Hamamatsu R9800 photomultipliers)

Annihilation gamma quanta hit time measurement:
$\sigma_{\mathrm{t}}(0.511 \mathrm{MeV}) \sim 125 \mathrm{ps}$ [P. Moskal et al., Nucl.Instrum. Meth. A775 (2015) 54-62]
 loss resolution:
$\sigma_{\mathrm{E}} / \mathrm{E}=0.044 / \sqrt{\mathrm{E}(\mathrm{MeV})}$ [P. Moskal et al. Nucl.Instrum.Meth.

signals at multiple thresholds
[M. Patka et al., JINST 12 (2017) no.08, P08001]
[G. Korcyl et al., IEEE Transactions on Medical Imaging, in press]
o-ps spin and photon polarization measurement

*
 Discrete symmetries tests with the J-PET detector

* Positrons source:
${ }^{22} \mathrm{Na} \beta^{+}$decay (parity violation)

$$
\begin{aligned}
{ }^{22} \mathrm{Na} \rightarrow & { }^{22} \mathrm{~N} e^{*}+e^{+}+v_{e} \\
\downarrow & { }^{22} \mathrm{~N} e^{*} \rightarrow{ }^{22} \mathrm{Ne}+\gamma(1.247 \mathrm{MeV}, \tau \approx 3.7 \mathrm{ps})
\end{aligned}
$$

* Positron longitudinal polarization

o-Ps spin determination
* Signal signature:
* 3 y quanta with common vertex reconstructed in the target
* Late decay with respect to the registration of the de-excitation photon
* Photon polarization determination using Compton scattering

[P. Moskal et. al., Acta Phys.Polon. B47 (2016) 509]

J-PET

* Positron direction can be determined using trilateration method (angular resolution $\sigma_{\theta} \approx 15^{\circ}$)

J-PET

* Positron direction can be determined using

*
 Discrete symmetries tests with the J-PET detector

* De-excitation photon reconstruction based on the energy deposition.
* Photon momentum reconstruction based on hit position and common vertex (with 4-momentum conservation).
* Photons polarisation (ansatz):

$$
\vec{\varepsilon}_{i}=\vec{k}_{i} \times \vec{k}_{i}^{\prime}
$$

* Most probable angle between Compton scattering plane and the photon \vec{E} vector $\eta \sim 90^{\circ}$
$\frac{d \sigma}{d \Omega} \backsim\left(\frac{k_{i}^{\prime}}{k_{i}}\right)^{2}\left(\frac{k_{i}}{k_{i}^{\prime}}+\frac{k_{i}^{\prime}}{k_{i}}-2 \sin ^{2} \theta \cos ^{2} \eta\right)$
* Background sources for the o-Ps $\rightarrow 3 \gamma$ measurement:
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 2 \gamma+$ scattering
- void borders effects: pick-off annihilations or ortho-para conversion (7-36\%)

Discrete symmetries tests with the J-PET detector

* FEE sampling signals at 4 thresholds on leading and trailing edge
* De-excitation gamma identification based on Time Over Threshold (TOT) measurement [S. Sharma poster]

ProjectionX of biny=[1,200] $[y=-0.5 . .199 .5]$

$\theta_{23}+\theta_{12}>180$
$\theta_{23}+\theta_{12}=180$
$\theta_{23}+\theta_{12}<180$

J-PET upgrades

*
 Summary and outlook

* Discrete symmetries play a fundamental role in particle and nuclear physics.
* There is still substantial lack of experimental data on fundamental symmetries tests in the leptonic sector.
* The J-PET detector has a big potential to contribute in C, T, CP and CPT tests in the o-Ps decays at the level of 10^{-5}.
* The detector is under the commissioning and first tests measurements were done.
* Further detector upgrades are already under development
* With the J-PET detector we are sensitive to the CP violating effects at the level of 10^{-5}.

* Discrete symmetries in physics

* Parity transformation: $\mathrm{P}(\vec{x})=-\vec{x}$
* Not conserved by weak interactions (discovered in the ${ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni} \mathrm{e}^{-} \bar{v}$ decay)
* Time reversal T: t \rightarrow-t
* Violated by weak interactions (recent BaBar measurement in the B^{0} meson system)
\star Charge conjugation C: particle \leftrightarrow antiparticle
* $\mathrm{C}|\gamma>=-1| \gamma>$
* Symmetry broken by weak interaction (discovered in the neutral kaon system)

CP symmetry

* Relevant in view of matter-antimater asymmetry
* Broken in weak proesses
* Strong CP problem
* CPT theorem: The combination CPT is always conserved in any local quantum field theory

TABLE 2.		$\begin{aligned} & \text { JPET + START } \\ & \text { + NEW LAYER } \end{aligned}$	Gammasphere [47]	CP-Tokyo [35]
Detector material		EJ-230 / BaF2	HPGe and BGO	LYSO
Time resolution (sigma)		$80 \mathrm{ps} / 80 \mathrm{ps}$	4.6 ns	0.9 ns
Reconstruction efficiency including registration of deexcitation γ (start)	$\mathrm{p}-\mathrm{Ps} \rightarrow 2 \gamma$	$1.5 \cdot 10^{-3}$	$4 \cdot 10^{-2}$	-
	$\mathrm{o}-\mathrm{Ps} \rightarrow \gamma \gamma \gamma_{\mathrm{n}}$	$3 \cdot 10^{-4}$	$4 \cdot 10^{-2}$	$4 \cdot 10^{-4}$
	$0-\mathrm{Ps} \rightarrow 3 \gamma$	$6 \cdot 10^{-6}$	$5.7 \cdot 10^{-3}$	-
Reconstruction efficiency	$\mathrm{p}-\mathrm{Ps} \rightarrow \gamma \gamma$	10^{-2}	$\sim 4 \cdot 10^{-2}$	-
	$0-\mathrm{Ps} \rightarrow 3 \gamma$	$4 \cdot 10^{-5}$	$\sim 5.7 \cdot 10^{-3}$	-
Statistics of events (days of rim)	$\mathrm{p}-\mathrm{Ps} \rightarrow 2 \gamma$	$1.2 \cdot 10^{12}(\sim 1000)^{*}$	-	-
	$\mathrm{o}-\mathrm{Ps} \rightarrow \gamma \gamma \gamma_{\mathrm{n}}$	$2.410^{11}(\sim 1000)^{*}$	-	$\sim 10^{7}(\sim 180)$
	o-Ps $\rightarrow 3 \gamma$	$5.010^{9}(\sim 1000)^{*}$	$2.65 \cdot 10^{7}(\sim 36)$	-
Angular resolution (sigma)	polar	$\sim 1^{\circ}$	$\sim 4^{\circ}$	$\sim 3.5{ }^{\circ}$
	azimuthal	$0.5{ }^{\circ}$	$\sim 4^{\circ}$	$\sim 3.5{ }^{\circ}$
Polarization degree	tensor	$\sim 87 \%$	-	~87\%
	linear	$\sim 40 \%$	less than 40%	-
Source activity		10 MBq	$0.04 \mathrm{MBq}{ }^{22} \mathrm{Na}$ or ${ }^{68} \mathrm{Ge}$ (limited by pile-ups)	$1 \mathrm{MBq} /{ }^{22} \mathrm{Na}$ (limited by pile-ups)
Available angular range		full range	full range	few fixed angles

