

Measurement of helicity dependence of π⁰ photoproduction on deuteron

Federico Cividini (University of Mainz) on behalf of A2 collaboration @ MAMI

Meson 2018 – 11.06.2018, Kraków

Overview

- Motivation
- A2 experimental setup @ MAMI
- Analysis and results of single $\pi^{\scriptscriptstyle 0}$ photoproduction from deuteron
- Proton and neutron identification & background subtraction
- Preliminary results of double polarized observable E from quasi-free proton and quasi-free neutron

"One very powerful way of experimentally investigating the strongly interacting particles (**hadrons**) is to **look at them**, to probe them with a known particle; in particular the **photon** (no other is known as well). This permits a much finer control of variables, and probably decreases the theoretical complexity of the interactions" (Feynman, 1992).

 To access the internal structure of the nucleon (<1 fm), which photon energy is needed?

 $E_{\gamma} \simeq \frac{200(MeV \cdot fm)}{\lambda_{\gamma}} \to E_{\gamma} \gtrsim 200 \, MeV$

- The photon is absorbed by the nucleon and we can measure the total photo-absorption cross section
- What happens "under" the total unpolarized cross section? Is there something else to understand?

- The photon changes the internal structure of the nucleon \rightarrow Excited states (resonances) $\exists [\uparrow \uparrow \uparrow \uparrow \downarrow] \rightarrow \times$
- From the excited nucleon one (or more) pseudoscalar meson is emitted
- Nucleon resonances are broad and overlapping, cross section is not sufficient
- It is necessary to investigate the different final states

BARYON SPECTROSCOPY & MEASURE POLARIZATION OBSERVABLES

- To access resonances contributions which are small
- Test the PWA models

 Photo-production of a single pseudo-scalar meson from the nucleon is described theoretically by complex helicity amplitudes:

$$\gamma(\vec{k}) + N(\vec{p_i}) = m(\vec{q}) + N'(\vec{p_f})$$
Spin states: $\pm 1 \pm 1/2 \qquad 0 \pm 1/2$
8 matrix elements
Parity conservation
4 matrix elements

From these 4 complex amplitudes is possible to construct 16 bilinear products
 16 polarization observables

Photon polarization		Target polarization			Recoil nucleon polarization			Target and recoil polarizations			
	-	- X	- У	- Z	- X'	- y'	- X'	x' x	x' Z	z' x	Z' Z
Unpolarized Linear polariz. Circular polariz.	σ Σ -	- H F	T (-P) -	- G E	O _{x'} C _{x'}	P (-T) -	O _{z'} C _{z'}	T _{x'} (-L _{z'}) -	L _{x'} (T _{z'}) -	T _{z'} (L _{z'}) -	L _{z'} (-T _{z'}) -

1 unpolarized, 3 single polarized, 12 double polarized measurements

"Complete (model independent) experiment" Measurement of 8 observables (4 single polarization and 4 properly chosen double polarization observables) are sufficient to describe the amplitudes without ambiguities

Unpolarized, linearly polarized, circularly polarized beam

Measurement should include different production products \rightarrow multiple photoproduction channels

Focus on eta and pion production for the Beam-Target set in A2, my focus on E

Double polarization observable E

0.8

- Helicity transfer from electrons to photons → circularly polarized photon beam
- Longitudinally polarized target

And what about the Isospin?

Motivation Isospin amplitudes

- A_{IS} = isoscalar transition with I=1/2 and I=0
- $A^{\vee I}$ = isovector transition with I=1/2 and $|\Delta I|$ =1
- A_{V3} = isovector transition with I=3/2 and $|\Delta I|$ =1

EM interaction \rightarrow not conserve isospin Strong interaction \rightarrow conserve isospin

$$A(\gamma p \to n\pi^{+}) = -\sqrt{\frac{1}{3}}A^{V3} + \sqrt{\frac{2}{3}}(A^{VI} - A^{IS})$$
$$A(\gamma n \to p\pi^{-}) = +\sqrt{\frac{1}{3}}A^{V3} - \sqrt{\frac{2}{3}}(A^{VI} + A^{IS})$$
$$A(\gamma p \to p\pi^{0}) = +\sqrt{\frac{2}{3}}A^{V3} + \sqrt{\frac{1}{3}}(A^{VI} - A^{IS})$$
$$A(\gamma n \to n\pi^{0}) = +\sqrt{\frac{2}{3}}A^{V3} + \sqrt{\frac{1}{3}}(A^{VI} + A^{IS})$$

Complete set of pion production measurements on both proton and neutron are necessary!!

Measurements with neutron target

- Lack of data for neutron
- No free neutron target → **Deuterium** or ³He
- Nuclear effects \rightarrow Fermi motion and FSI

A2 experimental setup @ MAMI

Electron beam

- Laser source for polarized electrons
- Energy: 1557 MeV
- Max pol degree ~ 75-78%
- Photon beam
 - Bremsstrahlung $E_{y} = E_{beam} E_{e tagger}$
 - Helicity transfer from electrons to photons
- Photon tagging with FPD
 - $E_{y} < 1.5 \text{ GeV}$
 - $-\Delta E_{y} = 2-4 \text{ MeV}$
- Tagging efficiency

for photon flux normalization

A2 experimental setup @ MAMI Frozen Spin Target

Cryostat

- Dynamic nuclear polarization with micro-wave irradiation at 70 GHz and 2.5 T to transfer the polarization from electrons to nucleons
- Cryostat with mixture of ³He/⁴He at 25 mK
- 0.63 T coil to maintain the polarization

Deuterated Butanol

- Quickly polarizable
- Background nuclei with spin 0
- Long relaxation time t > 2000 h
- Carbon foam
 - For background subtraction

A2 experimental setup @ MAMI Detectors

Crystal Ball

- 672 Nal crystals 20°<θ<160° (94%)
- PID for dE/E particle identification, 24 barrel of thin plastic scintillators
- 2 MWPCs for charged particles

• TAPS

- 366 BaF₂ crystals
- 72 PbWO₄ crystals
- 1°<θ<20° (3%)
- Cerenkov for vetoing TAPS trigger

Polarized cross section on deuteron

$$\sigma_{pol} = \sigma_A - \sigma_P$$

- Particle selection:
 - Only 1 π^0 reconstruction
- MC simulation
- Tagging efficiency calculation

E observable on proton and neutron

$$E = \frac{\sigma^{\frac{3}{2}} - \sigma^{\frac{1}{2}}}{\sigma^{\frac{3}{2}} + \sigma^{\frac{1}{2}}} = \frac{N^{\frac{3}{2}} - N^{\frac{1}{2}}}{N^{\frac{3}{2}} + N^{\frac{1}{2}}} \cdot \frac{1}{P_t} \cdot \frac{1}{P_\gamma} \cdot \frac{1}{D}$$

- Particle identification:
 - $1 \pi^0$ reconstruction
 - Nucleon identification
- Carbon and oxygen background from D-Butanol molecule

Total single π^0 polarized cross section

Selection of the events: $\gamma + d \rightarrow \pi^0 + X$

Federico Cividini

Differential polarized cross section

Polarized cross section on deuteron

$$\sigma_{pol} = \sigma_A - \sigma_P$$

- Particle selection:
 - Only 1 π^0 reconstruction
- Efficiency simulation
- Tagging efficiency calculation

E observable on proton and neutron

$$E = \frac{\sigma^{\frac{3}{2}} - \sigma^{\frac{1}{2}}}{\sigma^{\frac{3}{2}} + \sigma^{\frac{1}{2}}} = \frac{N^{\frac{3}{2}} - N^{\frac{1}{2}}}{N^{\frac{3}{2}} + N^{\frac{1}{2}}} \cdot \frac{1}{P_t} \cdot \frac{1}{P_\gamma} \cdot \frac{1}{D}$$

- Particle identification:
 - $1 \pi^0$ reconstruction
 - Nucleon identification
- Carbon and oxygen background from D-Butanol molecule

Nucleon identification

- Focus on the tracks not used for π^0 reconstruction
- Coplanarity for nucleon candidates
- TOF and PSA in TAPS
- Cluster size in CB for neutron-photons separation
- dE/E, check for protons selection

Federico Cividini

Carbon subtraction

Missing mass plots for proton events

Federico Cividini

Results for observable E - proton

Federico Cividini

Results for observable E - neutron

Conclusions

- First data with large energy range for $\gamma + d \rightarrow \pi^0 + X$
- Preliminary results in agreement with previous measurements
- Larger energy range for E observable from quasifree proton and quasi-free neutron

Conclusions

- First data with large energy range for $\gamma + d \rightarrow \pi^0 + X$
- Preliminary results in agreement with previous measurements
- Larger energy range for E observable from quasifree proton and quasi-free neutron

Thank you for your attention!

Plenary talk by Philippe Martel, tomorrow at 10:30 "Meson Investigations by the MAMI A2 Collaboration"

ADDITIONAL MATERIAL

Carbon subtraction

Ratio between butanol and carbon missing mass

Single π^0 on quasi-free proton

Missing mass plots for Carbon background subtraction

Events from: Butanol, Carbon_original, Carbon_with_scaling_factor, Protons

Single π^{I} on quasi-free neutron

Missing mass plots for Carbon background subtraction

Events from: Butanol, Carbon_original, Carbon_with_scaling_factor, Neutrons

Federico Cividini

Recoil neutron (proton identified)

Federico Cividini

Recoil proton (neutron identified)

Federico Cividini