

Izabela Ciepał for the HADES Collaboration

Institute of Nuclear Physics PAS

- Motivations for experiments with pion beams,
 Pion beam @ GSI,
- 3) Analysis of $p\pi^-$, $n\pi^+\pi^-$, $p\pi^-\pi^o$ channels,
- 4) Partial Wave Analysis (PWA)
 by Bonn-Gatchina group,
 5) Outlook.

Motivation

missing resonances problem

baryon specroscopy

$\pi N \rightarrow \pi \pi N$ status

most of data 1.3<s<2 GeV from

- Manley *et. al* PRD30 (1984) 904
 241214 bubble chamber events analyzed in isobar PWA model
- very scarce data base for pion-nucleon reactions
- differential distributions are even more scarce (or missing)
- more recent data do not help for π⁺π⁻
 in 1.3<s<2 GeV region

$\pi N \rightarrow \pi \pi N$ status

Pion Beam @ GSI

pion momentum [GeV/c]

reaction N+Be, 8-10*10¹⁰ N₂ ions/spill (4s)
secondary π⁻ with I ~ 2-3 10⁵/s
p = 654.1, 683.5, 738.9, 791 MeV/c
PE (CH₂)_n and C targets
Unique possibility to investigate em. resonance decays via combined Partial Wave Analysis of hadronic and electromagnetic final states

Time-Like electromagnetic form factors No data Inverse pion electroproduction $\pi \xrightarrow{F(q^2)}_{n} \gamma^*_{e^*}$ $q^2 = (M_{ee})^2 > 0$ variable

See also: contribution of Beatrice RAMSTEIN plenary talk

Pion Beam @ GSI

pion momentum Δp/p =2.2% (σ), ~50% acceptance of pion beam line
 in beam tracking system: (X1,X2/Y1/Y2) for pion momentum determination: Δp/p =0.1%

HADES Physics Programe'2014 with Pion Beams

Main advantages of pion beams:

- 1) **selectivity:** resonances can be excited at given mass by choosing the beam (pion) momentum, HADES starts with $\sqrt{s} = (1.46 - 1.55)$ GeV $- N^*(1520)$ resonance region, data obtained at 4 momenta: **0.656**, **0.69**, **0.748**, **0.8 GeV/c** $n = \frac{\pi N \rightarrow 2\pi N: \text{Bonn/Gatchina PWA}}{20}$
- 2) π + π production: off-shell coupling of ρ to resonance,

 $\rho \rightarrow \pi + \pi$ - (~100%) "golden channel",

3) dilepton channel R → e+e-, never measured in pion induced reactions.

- (CH2)n polyethylene target (PE) and carbon (C) target,
- elastic scattering identification: $\pi^- p \rightarrow \pi^- p$,
- two-pion identification in channel: nπ⁺π⁻, pπ⁻π^o (exclusive channels via missing mass), partial wave analysis focused on N(1520) and ρ production,
- dilepton identification in channel: ne⁺e⁻ (quasi-exclusive channel) baryon resonance Dalitz decays and two-body ρ decay.

Identification of Channels

Elastic Scattering

statistics of existing database increased by more than 2 orders of magnitude $(> 4*10^7 \text{ events})$

- Coherent sum of partial waves
- Energy dependent solutions: many experimental sets treated together by max. loglikehood method event by event
- Detector acceptances taken into account

Partial Wave Analysis (PWA)

- $\frac{\pi^{-} \text{ Initial : SLJ}}{\text{resonance contributions on event based likelihood fits}}$
 - χ^2 fits to differential cross sections
 - energy and angular dependencies of different observables are analysed simultaneously
 - normalization to the total cross section

200 datasets 2 mln likelihoods

See also: contribution of Andrey SARANSEV plenary talk

PWA: Initial Waves Constraints

resonances matter: $D_{13}(1520)$, $P_{11}(1440)$

Angular Distributions & Reference Frames

+Invariant masses +CM angular distributions

PWA Results @ 656 MeV/c

PWA Results @ 656 MeV/c

helicity angles

PWA Results @ 656 MeV/c

Gottfried-Jackson

Total Cross Section

Bands represent spread of the PWA solutions in 3 cases:

- with 2 different weights for the HADES cross sections (300, 80)
- with heigh weight of Manley cross section (old data)

D. M. Manley *et al.* Phys. Rev. D 30 (1984) 904

HADES Physics Program with Pion Beams – Near Future

- High statistics beam energy scan : continuation and extension to third resonance region
- Hadronic final states, one pion, 2 pion, hyperon production to control resonance excitation (HADES upgrade with el. calorimeter ! neutral final states: $\eta/\pi/\omega$)
- Dielectron measurements : ρR couplings S31(1620), D33(1700), P13(1720),...

HADES & pion beam is an unique tool

- to understand in details baryon ρ couplings
- significant off-shell contribution originating from $N(1520)D_{13}$ shown by combined PWA and e⁺e⁻ data
- further investigation on specific observables (helicity, GJ
 → Dalitz plots) necessary in order to prove
 the conitrbuting channels

Thank You for Your Attention

