Recent progress in the partial-wave analysis of the $\pi^-\pi^+\pi^-$ final state at COMPASS

Fabian Krinner on behalf of the COMPASS collaboration

Institute for Hadronic Structure and Fundamental Symmetries

Technische Universität München

Jun 11th 2018 – Kraków

The COMPASS experiment common Muon Proton Apparatus for Structure and Spectroscopy

• COMPASS: Very large data set for the diffractive process

$$\pi^-_{
m beam} + \boldsymbol{\rho}
ightarrow \pi^- \pi^+ \pi^- + \boldsymbol{\rho}$$

- COMPASS: Very large data set for the diffractive process $\pi_{\text{beam}}^- + p \rightarrow \pi^- \pi^+ \pi^- + p$
- Squared four-momentum transfer t' by Pomeron ℙ

- COMPASS: Very large data set for the diffractive process $\pi^-_{\text{beam}} + p \rightarrow \pi^- \pi^+ \pi^- + p$
- Squared four-momentum transfer t' by Pomeron ℙ
- Exclusive measurement

- COMPASS: Very large data set for the diffractive process $\pi_{\text{beam}}^- + \mathbf{p} \rightarrow \pi^- \pi^+ \pi^- + \mathbf{p}$
- Squared four-momentum transfer t' by Pomeron ℙ
- Exclusive measurement
- 46×10^6 exclusive events

- COMPASS: Very large data set for the diffractive process $\pi_{\text{beam}}^- + \mathbf{p} \rightarrow \pi^- \pi^+ \pi^- + \mathbf{p}$
- Squared four-momentum transfer t' by Pomeron ℙ
- Exclusive measurement
- 46×10^6 exclusive events
- Rich structure in π⁻π⁺π⁻ mass spectrum: Intermediary states X⁻

- COMPASS: Very large data set for the diffractive process $\pi^-_{\text{beam}} + p \rightarrow \pi^- \pi^+ \pi^-_{\text{bachelor}} + p$
- Squared four-momentum transfer t' by Pomeron ℙ
- Exclusive measurement
- 46×10^6 exclusive events
- Rich structure in π⁻π⁺π⁻ mass spectrum: Intermediary states X⁻
- Also structure in π⁺π⁻ subsystem: Intermediary states ξ (isobar)

 Intermediary states: Dynamic amplitudes △ (m): Complex-valued functions of the invariant mass of the state

- Intermediary states: Dynamic amplitudes ∆ (m): Complex-valued functions of the invariant mass of the state
- Simplest example: Breit-Wigner amplitude with known mass m₀ and width Γ₀ of a resonance:

$$\Delta_{\mathsf{BW}}\left(m\right) = \frac{m_{0}\Gamma_{0}}{m_{0}^{2} - m^{2} - im_{0}\Gamma_{0}}$$

ТИП

- Intermediary states: Dynamic amplitudes ∆ (m): Complex-valued functions of the invariant mass of the state
- Simplest example: Breit-Wigner amplitude with known mass m₀ and width Γ₀ of a resonance:

$$\Delta_{\mathsf{BW}}\left(m\right) = \frac{m_{0}\Gamma_{0}}{m_{0}^{2} - m^{2} - im_{0}\Gamma_{0}}$$

• Analysis performed in bins of $m_{\chi^-} = m_{3\pi}$. Dynamic amplitude of χ^- inferred form the data

ТИП

- Intermediary states: Dynamic amplitudes ∆ (m): Complex-valued functions of the invariant mass of the state
- Simplest example: Breit-Wigner amplitude with known mass m₀ and width Γ₀ of a resonance:

$$\Delta_{\mathsf{BW}}\left(m\right) = \frac{m_{0}\Gamma_{0}}{m_{0}^{2} - m^{2} - im_{0}\Gamma_{0}}$$

- Analysis performed in bins of $m_{\chi^-} = m_{3\pi}$. Dynamic amplitude of χ^- inferred form the data
- Also binned in t'

ТИП

- Intermediary states: Dynamic amplitudes ∆ (m): Complex-valued functions of the invariant mass of the state
- Simplest example: Breit-Wigner amplitude with known mass m₀ and width Γ₀ of a resonance:

$$\Delta_{\mathsf{BW}}\left(m\right) = \frac{m_{0}\Gamma_{0}}{m_{0}^{2} - m^{2} - im_{0}\Gamma_{0}}$$

- Analysis performed in bins of $m_{\chi^-} = m_{3\pi}$. Dynamic amplitude of χ^- inferred form the data
- Also binned in t'
- Dynamic amplitude of ξ : Model input in conventional PWA

ТИП

- Intermediary states: Dynamic amplitudes ∆ (m): Complex-valued functions of the invariant mass of the state
- Simplest example: Breit-Wigner amplitude with known mass m₀ and width Γ₀ of a resonance:

$$\Delta_{\mathsf{BW}}\left(m\right) = \frac{m_{0}\Gamma_{0}}{m_{0}^{2} - m^{2} - im_{0}\Gamma_{0}}$$

- Analysis performed in bins of $m_{\chi^-} = m_{3\pi}$. Dynamic amplitude of χ^- inferred form the data
- Also binned in t'
- Dynamic amplitude of ξ : Model input in conventional PWA
- Physical dynamic isobar amplitudes may differ from the model

- TLM
- Intermediary states: Dynamic amplitudes ∆ (m): Complex-valued functions of the invariant mass of the state
- Simplest example: Breit-Wigner amplitude with known mass m₀ and width Γ₀ of a resonance:

$$\Delta_{\mathsf{BW}}\left(m\right) = \frac{m_{0}\Gamma_{0}}{m_{0}^{2} - m^{2} - im_{0}\Gamma_{0}}$$

- Analysis performed in bins of $m_{\chi^-} = m_{3\pi}$. Dynamic amplitude of χ^- inferred form the data
- Also binned in t'
- Dynamic amplitude of ξ : Model input in conventional PWA
- Physical dynamic isobar amplitudes may differ from the model
- Free parameters in dynamic isobar amplitudes computationally unfeasible

• Total intensity in one $(m_{3\pi}, t')$ bin as function of phase-space variables $\vec{\tau}$:

$$\mathcal{I}(\vec{\tau}) = \left|\sum_{i}^{\mathrm{waves}} \mathcal{T}_{i}[\psi_{i}(\vec{\tau}) \Delta_{i}(m_{\pi^{-}\pi^{+}}) + \mathrm{Bose \ sym.}]\right|^{2}$$

Fit parameters: Transition amplitudes T_i

Fixed: Angular amplitudes $\psi_i(\vec{\tau})$, dynamic isobar amplitudes $\Delta_i(m_{\pi^-\pi^+})$

• Total intensity in one $(m_{3\pi}, t')$ bin as function of phase-space variables $\vec{\tau}$:

$$\mathcal{I}(\vec{\tau}) = \left|\sum_{i}^{\mathrm{waves}} \mathcal{T}_{i}[\psi_{i}(\vec{\tau}) \Delta_{i}(m_{\pi^{-}\pi^{+}}) + \mathrm{Bose \ sym.}]\right|^{2}$$

Fit parameters: Transition amplitudes T_i

Fixed: Angular amplitudes $\psi_i(\vec{\tau})$, dynamic isobar amplitudes $\Delta_i(m_{\pi^-\pi^+})$

• Fixed isobar amplitudes \rightarrow Sets of $m_{\pi^-\pi^+}$ bins:

$$\Delta_{i}(m_{\pi^{-}\pi^{+}}) \rightarrow \sum_{\text{bins}} \mathscr{T}_{i}^{\text{bin}} \Delta_{i}^{\text{bin}}(m_{\pi^{-}\pi^{+}}) \equiv [\pi\pi]_{J^{PC}}$$
$$\Delta_{i}^{\text{bin}}(m_{\pi^{-}\pi^{+}}) = \begin{cases} 1, & \text{if } m_{\pi^{-}\pi^{+}} \text{ in the bin.} \\ 0, & \text{otherwise.} \end{cases}$$

• Total intensity in one $(m_{3\pi}, t')$ bin as function of phase-space variables $\vec{\tau}$:

$$\mathcal{I}(\vec{\tau}) = \left|\sum_{i}^{ ext{waves}} \mathcal{T}_{i}[\psi_{i}(\vec{\tau}) \Delta_{i}(m_{\pi^{-}\pi^{+}}) + ext{Bose sym.}]\right|^{2}$$

Fit parameters: Transition amplitudes T_i

Fixed: Angular amplitudes $\psi_i(\vec{\tau})$, dynamic isobar amplitudes $\Delta_i(m_{\pi^-\pi^+})$

• Fixed isobar amplitudes \rightarrow Sets of $m_{\pi^-\pi^+}$ bins:

$$\Delta_i (m_{\pi^-\pi^+})
ightarrow \sum_{ ext{bins}} \mathscr{T}_i^{ ext{bin}} \Delta_i^{ ext{bin}} (m_{\pi^-\pi^+}) \equiv [\pi\pi]_{J^{PC}}$$
 $\Delta_i^{ ext{bin}} (m_{\pi^-\pi^+}) = egin{cases} 1, & ext{if } m_{\pi^-\pi^+} & ext{in the bin.} \\ 0, & ext{otherwise.} \end{cases}$

• Each $m_{\pi^-\pi^+}$ bin behaves like an independent partial wave with $\mathcal{T}_i^{\text{bin}} = \mathcal{T}_i \mathcal{T}_i^{\text{bin}}$:

$$\mathcal{I}(\vec{\tau}) = \left| \sum_{i}^{\text{waves bins}} \sum_{\text{bin}}^{\text{tins}} \mathcal{T}_{i}^{\text{bin}} \left[\psi_{i}(\vec{\tau}) \Delta_{i}^{\text{bin}} \left(m_{\pi^{-}\pi^{+}} \right) + \text{Bose sym.} \right] \right|^{2}$$

Freed-isobar method

Step-like isobar amplitudes

Fabian Krinner (TUM)

Freed-isobar method

Step-like isobar amplitudes

Fabian Krinner (TUM)

• J^{PC} : Spin and eigenvalues under parity and charge conjugation of X^-

J^{PC}: Spin and eigenvalues under parity and charge conjugation of X⁻

• M^{ε} : Spin projection and naturality of the exchange particle

- J^{PC} : Spin and eigenvalues under parity and charge conjugation of X^-
- M^{ε} : Spin projection and naturality of the exchange particle
- ξ : Appearing fixed or freed isobar, e.g. ρ (770) or $[\pi\pi]_{1--}$

- J^{PC} : Spin and eigenvalues under parity and charge conjugation of X^-
- M^{ε} : Spin projection and naturality of the exchange particle
- ξ : Appearing fixed or freed isobar, e.g. ρ (770) or $[\pi\pi]_{1--}$
- π : Indicating the bachelor π^- . Always the same

- J^{PC} : Spin and eigenvalues under parity and charge conjugation of X^-
- M^{ε} : Spin projection and naturality of the exchange particle
- ξ : Appearing fixed or freed isobar, e.g. ρ (770) or $[\pi\pi]_{1--}$
- π : Indicating the bachelor π^- . Always the same
- L: Orbital angular momentum between isobar and bachelor pion

1⁻⁺: Spin and eigenvalues under parity and charge conjugation of X⁻

- 1+: Spin projection and naturality of the exchange particle
- ρ (770): Appearing isobar (fixed)
- π : Indicating the bachelor π^-
- P: Orbital angular momentum between isobar and bachelor pion

- 1⁻⁺: Spin and eigenvalues under parity and charge conjugation of X⁻
- 1+: Spin projection and naturality of the exchange particle
- $[\pi\pi]_{1--}$: Appearing isobar (freed)
- π : Indicating the bachelor π^-
- P: Orbital angular momentum between isobar and bachelor pion

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, four bins in t' from 0.1 to 1.0 $(\text{GeV}/c)^2$
 - ► 200 independent fits

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, four bins in t' from 0.1 to $1.0 \,(\text{GeV}/c)^2$
 - ► 200 independent fits
- Wave set: Based on 88 partial-waves model COMPASS collaboration, *Phys. Rev.* D95, (2017) 032004

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, four bins in t' from 0.1 to $1.0 \,(\text{GeV}/c)^2$
 - 200 independent fits
- Wave set: Based on 88 partial-waves model COMPASS collaboration, *Phys. Rev.* D95, (2017) 032004
- 12 waves freed (72 remaining waves still with fixed isobars):

$$\begin{array}{lll} 0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S & 2^{-+}0^{+}[\pi\pi]_{0^{++}}\pi D & 1^{++}1^{+}[\pi\pi]_{1^{--}}\pi S \\ 0^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \\ 1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi F & 2^{++}1^{+}[\pi\pi]_{1^{--}}\pi D \\ 1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S & 2^{-+}0^{+}[\pi\pi]_{2^{++}}\pi S & 1^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \end{array}$$

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, four bins in t' from 0.1 to $1.0 \,(\text{GeV}/c)^2$
 - 200 independent fits
- Wave set: Based on 88 partial-waves model COMPASS collaboration, *Phys. Rev.* D95, (2017) 032004
- 12 waves freed (72 remaining waves still with fixed isobars):

$$\begin{array}{lll} 0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S & 2^{-+}0^{+}[\pi\pi]_{0^{++}}\pi D & 1^{++}1^{+}[\pi\pi]_{1^{--}}\pi S \\ 0^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \\ 1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi F & 2^{++}1^{+}[\pi\pi]_{1^{--}}\pi D \\ 1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S & 2^{-+}0^{+}[\pi\pi]_{2^{++}}\pi S & 1^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \end{array}$$

• 40 MeV $m_{\pi^-\pi^+}$ bins for freed waves, finer binnings in regions of known resonances: $f_0(980)$, $\rho(770)$, $f_2(1270)$

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, four bins in t' from 0.1 to 1.0 (GeV/c)²
 - 200 independent fits
- Wave set: Based on 88 partial-waves model COMPASS collaboration, *Phys. Rev.* D95, (2017) 032004
- 12 waves freed (72 remaining waves still with fixed isobars):

$$\begin{array}{lll} 0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S & 2^{-+}0^{+}[\pi\pi]_{0^{++}}\pi D & 1^{++}1^{+}[\pi\pi]_{1^{--}}\pi S \\ 0^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \\ 1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi F & 2^{++}1^{+}[\pi\pi]_{1^{--}}\pi D \\ 1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S & 2^{-+}0^{+}[\pi\pi]_{2^{++}}\pi S & 1^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \end{array}$$

- 40 MeV $m_{\pi^-\pi^+}$ bins for freed waves, finer binnings in regions of known resonances: $f_0(980)$, $\rho(770)$, $f_2(1270)$
- Depending on $m_{3\pi}$ and wave, up to 62 $m_{\pi^-\pi^+}$ bins per freed wave

Freed-isobar analysis: many more free parameters than fixed-isobar analysis

Zero mode in the spin-exotic wave What is a "zero mode"?

- Freed-isobar analysis: many more free parameters than fixed-isobar analysis
 - Causes continuous mathematical ambiguities in the model
- Freed-isobar analysis: many more free parameters than fixed-isobar analysis
 - ► Causes continuous mathematical ambiguities in the model
- "Zero mode": dynamic isobar amplitudes $\Delta^0 (m_{\pi^-\pi^+})$, that do not contribute to the **total** decay amplitude for the 3π system
- Spin-exotic wave:

$$\psi(\vec{\tau}) \Delta^0(m_{\pi^-\pi^+}) + \text{Bose sym.} = 0$$

at every point $\vec{\tau}$ in phase space

- Freed-isobar analysis: many more free parameters than fixed-isobar analysis
 - ► Causes continuous mathematical ambiguities in the model
- "Zero mode": dynamic isobar amplitudes Δ⁰ (m_{π⁻π⁺}), that do not contribute to the total decay amplitude for the 3π system
- Spin-exotic wave:

$$\psi(\vec{\tau}) \Delta^0(m_{\pi^-\pi^+}) + \text{Bose sym.} = 0$$

at every point $\vec{\tau}$ in phase space

 Dynamic isobar amplitudes result in the same intensity, independent of the complex-valued C:

$$\Delta^{ ext{meas}}\left(\textit{m}_{\xi}
ight) = \Delta^{ ext{phys}}\left(\textit{m}_{\xi}
ight) + \mathcal{C}\Delta^{0}\left(\textit{m}_{\xi}
ight)$$

FK, D. Greenwald, D. Ryabchikov, B. Grube, S. Paul, *Phys. Rev.* **D97**, (2018) 114008

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Effects on dynamic isobar amplitudes

All describe the same total 3π decay amplitude

Fabian Krinner (TUM)

Zero mode in the spin-exotic wave Resolving the ambiguity

• Now for $m_{\pi^-\pi^+}$ bins: $\vec{\mathcal{T}}^0 = \left\{ \Delta^0 \left(m_{\mathrm{bin}} \right) \right\}$ for all $m_{\pi^-\pi^+}$ bins

Zero mode in the spin-exotic wave Resolving the ambiguity

- Now for $m_{\pi^-\pi^+}$ bins: $\vec{\mathcal{T}}^0 = \{\Delta^0(m_{\mathrm{bin}})\}$ for all $m_{\pi^-\pi^+}$ bins
- The fitting algorithm might find a solution, shifted away from the physical solution \$\vec{T}^{phys}\$:

$$\vec{\mathcal{T}}^{\rm phys}=\vec{\mathcal{T}}^{\rm fit}-\mathcal{C}\vec{\mathcal{T}}^0$$

- Now for $m_{\pi^-\pi^+}$ bins: $\vec{\mathcal{T}}^0 = \left\{ \Delta^0\left(m_{\mathrm{bin}}\right) \right\}$ for all $m_{\pi^-\pi^+}$ bins
- The fitting algorithm might find a solution, shifted away from the physical solution $\vec{\mathcal{T}}^{\rm phys}$:

$$ec{\mathcal{T}}^{\mathrm{phys}} = ec{\mathcal{T}}^{\mathrm{fit}} - \mathcal{C} ec{\mathcal{T}}^{0}$$

• Obtain physical solution: constrain ${\cal C}$ by conditions on the resulting dynamic amplitudes $\vec{\cal T}^{\rm fit}$

Zero mode in the spin-exotic wave Resolving the ambiguity

- Now for $m_{\pi^-\pi^+}$ bins: $\vec{\mathcal{T}}^0 = \left\{ \Delta^0\left(m_{\mathrm{bin}}\right) \right\}$ for all $m_{\pi^-\pi^+}$ bins
- The fitting algorithm might find a solution, shifted away from the physical solution $\vec{\mathcal{T}}^{\rm phys}$:

$$\vec{\mathcal{T}}^{\mathrm{phys}} = \vec{\mathcal{T}}^{\mathrm{fit}} - \mathcal{C}\vec{\mathcal{T}}^{0}$$

- Obtain physical solution: constrain ${\cal C}$ by conditions on the resulting dynamic amplitudes $\vec{\cal T}^{\rm fit}$
- In the case of the $1^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P$ wave:
 - ► use the Breit-Wigner for the ρ (770) resonance with fixed parameters as in the fixed-isobar analysis
 - Imit fit range to m_{π[−]π⁺} < 1.12 GeV to minimize effects from possible excited ρ states

Zero mode in the spin-exotic wave Resolving the ambiguity

- Now for $m_{\pi^-\pi^+}$ bins: $\vec{\mathcal{T}}^0 = \left\{ \Delta^0\left(m_{\mathrm{bin}}\right) \right\}$ for all $m_{\pi^-\pi^+}$ bins
- The fitting algorithm might find a solution, shifted away from the physical solution $\vec{\mathcal{T}}^{\rm phys}$:

$$ec{\mathcal{T}}^{\mathrm{phys}} = ec{\mathcal{T}}^{\mathrm{fit}} - \mathcal{C} ec{\mathcal{T}}^0$$

- Obtain physical solution: constrain ${\cal C}$ by conditions on the resulting dynamic amplitudes $\vec{\cal T}^{\rm fit}$
- In the case of the $1^{-+}1^+[\pi\pi]_{1^{--}}\pi P$ wave:
 - ► use the Breit-Wigner for the ρ (770) resonance with fixed parameters as in the fixed-isobar analysis
 - Imit fit range to m_{π[−]π⁺} < 1.12 GeV to minimize effects from possible excited ρ states
- **Note:** Resolving the ambiguity fixes only a single complex-valued degree of freedom. $n_{\rm bins} 1$ complex-valued degrees of freedom remain free.

Resolving the ambiguity

ТЛП

Resolving the ambiguity

ТЛП

Resolving the ambiguity

ТЛП

Fabian Krinner (TUM)

ТШП

 Dynamic isobar amplitude for the spin-exotic wave obtained via freed-isobar PWA

- Dynamic isobar amplitude for the spin-exotic wave obtained via freed-isobar PWA
- Zero-mode ambiguity resolved with ρ (770) as constraint

- Dynamic isobar amplitude for the spin-exotic wave obtained via freed-isobar PWA
- Zero-mode ambiguity resolved with ρ (770) as constraint
- Dynamic isobar amplitude dominated by ρ (770)

- Dynamic isobar amplitude for the spin-exotic wave obtained via freed-isobar PWA
- Zero-mode ambiguity resolved with ρ (770) as constraint
- Dynamic isobar amplitude dominated by $\rho(770)$
- Significant deviations from a pure **Breit-Wigner shape**

 $\times 10^{6}$ 1.58 < $m_{3\pi}$ < 1.62GeV/ c^{2} $1^{-+}1^{+}[\pi\pi]_{1--}\pi P$ Corrected zero mode Full range Fixed shape $0.100 < t' < 0.141 (\text{GeV}/c)^2$ 0.5 10 m--+ [GeV/c2] $\times 10^3$ 1.58 < $m_{3\pi}$ < 1.62GeV/ c^2 $1^{-+}1^{+}[\pi\pi]_{1}-\pi P$ Full range

Intensity [Events/(GeV/c²)] 1 5

• Results for all bins in $m_{3\pi}$

- Results for all bins in m_{3π}
- Two-dimensional intensity distribution

- Results for all bins in $m_{3\pi}$
- Two-dimensional intensity distribution
- Zero-mode ambiguity resolved in every m_{3π}bin individually

- Results for all bins in $m_{3\pi}$
- Two-dimensional intensity distribution
- Zero-mode ambiguity resolved in every m_{3π}bin individually
- $m_{3\pi}$ dependence:
 - Spin-exotic π_1 resonance
 - Non-resonant effects

Results — Different bins in t'

Results — Different bins in t'

Results — Different bins in t'

ТШП

Results — Different bins in t'

• Coherently sum up all $m_{\pi^-\pi^+}$ bins to obtain $m_{3\pi}$ spectra

• Coherently sum up all $m_{\pi^-\pi^+}$ bins to obtain $m_{3\pi}$ spectra

- Coherently sum up all $m_{\pi^-\pi^+}$ bins to obtain $m_{3\pi}$ spectra
- Compare to results from conventional PWA

- Coherently sum up all $m_{\pi^-\pi^+}$ bins to obtain $m_{3\pi}$ spectra
- Compare to results from conventional PWA
- In all t' bins:

- Coherently sum up all $m_{\pi^-\pi^+}$ bins to obtain $m_{3\pi}$ spectra
- Compare to results from conventional PWA
- In all t' bins:

TUTT

- Coherently sum up all $m_{\pi^-\pi^+}$ bins to obtain $m_{3\pi}$ spectra
- Compare to results from conventional PWA
- In all t' bins:

- Coherently sum up all $m_{\pi^-\pi^+}$ bins to obtain $m_{3\pi}$ spectra
- Compare to results from conventional PWA
- In all t' bins:
 - Main features reproduced

ТШТ

- Coherently sum up all $m_{\pi^-\pi^+}$ bins to obtain $m_{3\pi}$ spectra
- Compare to results from conventional PWA
- In all t' bins:
 - Main features reproduced
 - General t' dependence matches

- Coherently sum up all $m_{\pi^-\pi^+}$ bins to obtain $m_{3\pi}$ spectra
- Compare to results from conventional PWA
- In all t' bins:
 - Main features reproduced
 - General t' dependence matches
 - higher intensity in the freed-isobar result

ТИП

- Coherently sum up all $m_{\pi^-\pi^+}$ bins to obtain $m_{3\pi}$ spectra
- Compare to results from conventional PWA
- In all t' bins:
 - Main features reproduced
 - General t' dependence matches
 - higher intensity in the freed-isobar result
 - ► at high t': π₁ peak reproduced

ТШТ

Conclusion: Freed isobar analysis of the spin-exotic wave

- In total 200 independent fits in $m_{3\pi}$ and t' bins
- Independent dynamic isobar amplitude obtained in every fit
- Zero mode ambiguities resolved
- Freed-isobar results for 23 other waves

Conclusion: Freed isobar analysis of the spin-exotic wave

- In total 200 independent fits in $m_{3\pi}$ and t' bins
- Independent dynamic isobar amplitude obtained in every fit
- Zero mode ambiguities resolved
- Freed-isobar results for 23 other waves

Outlook: Analyze dynamic isobar amplitudes

- Disentangle different effects:
 - Resonant (e.g. excited isobar resonances)
 - Re-scattering
 - Non-resonant

ТШТ

Conclusion: Freed isobar analysis of the spin-exotic wave

- In total 200 independent fits in $m_{3\pi}$ and t' bins
- Independent dynamic isobar amplitude obtained in every fit
- Zero mode ambiguities resolved
- Freed-isobar results for 23 other waves

Outlook: Analyze dynamic isobar amplitudes

- Disentangle different effects:
 - Resonant (e.g. excited isobar resonances)
 - Re-scattering
 - Non-resonant
- Test models beyond Breit-Wigner
 - ► K-matrix
 - Dispersion relations

Conclusion: Freed isobar analysis of the spin-exotic wave

- In total 200 independent fits in $m_{3\pi}$ and t' bins
- Independent dynamic isobar amplitude obtained in every fit
- Zero mode ambiguities resolved
- Freed-isobar results for 23 other waves

Outlook: Analyze dynamic isobar amplitudes

- Disentangle different effects:
 - Resonant (e.g. excited isobar resonances)
 - Re-scattering
 - Non-resonant
- Test models beyond Breit-Wigner
 - ► K-matrix
 - Dispersion relations

• Apply method to other channels: e.g. $K\pi\pi$, heavy mesons